Entrar

A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface. In planar symmetry, all points in a plane parallel to the plane of charge are identical with respect to the charges. Suppose the plane of the charge distribution is the xy-plane, and the electric field at a space point P with coordinates (x, y, z) is to be determined. Since the charge density is the same at all (x, y) - coordinates in the z = 0 plane, by symmetry, the electric field at P cannot depend on the x- or y-coordinates of point P. Therefore, the electric field at P can only depend on the distance from the plane and has a direction either toward the plane or away from the plane. That is, the electric field at P has only a nonzero z-component.

The electric field due to a planar charge distribution with surface charge density σ can be calculated using Gauss’s Law. For this, consider a cylindrical Gaussian surface that is equidistant from the plane on both sides. The cylinder's axis is perpendicular to the plane, and the area of its flat ends is A, as shown in the figure.

Equation1

The electric flux through the curved surface of the cylinder is zero as the electric field is perpendicular to the area vector. The electric flux through the flat surface is EA, as the electric field in this plane is parallel to the area vector. Hence the total flux through the Gaussian surface is -2EA.

Now, the charge enclosed by the Gaussian surface is -σA. From Gauss’s law, the electric flux through the Gaussian surface is proportional to the charge enclosed by the surface.

Using the equations for the flux and Gauss's law, the electric field at a point P from the uniformly charged plane is given by

Equation3

The direction of the electric field depends on the sign of the charge on the plane and the side of the plane where the field point P is located. From the above expression, the electric field is observed to be independent of the distance from the plane; this is an effect of the assumption that the plane is infinite. In practical terms, the result given above is still a useful approximation for finite planes near the center.

Tags
Gauss s LawPlanar SymmetryCharge DensityElectric FieldCylindrical Gaussian SurfaceElectric FluxSurface Charge DensityNonzero Z componentCharge EnclosedUniform Charge DistributionInfinite Plane ApproximationElectric Field Direction

Do Capítulo 23:

article

Now Playing

23.7 : Lei de Gauss: Simetria Planar

Lei de Gauss

7.5K Visualizações

article

23.1 : Fluxo Elétrico

Lei de Gauss

7.3K Visualizações

article

23.2 : Cálculo do Fluxo Elétrico

Lei de Gauss

1.6K Visualizações

article

23.3 : Lei de Gauss

Lei de Gauss

6.7K Visualizações

article

23.4 : Lei de Gauss: Resolução de Problemas

Lei de Gauss

1.5K Visualizações

article

23.5 : Lei de Gauss: Simetria Esférica

Lei de Gauss

7.0K Visualizações

article

23.6 : Lei de Gauss: Simetria Cilíndrica

Lei de Gauss

7.1K Visualizações

article

23.8 : Campo Elétrico Dentro de um Condutor

Lei de Gauss

5.7K Visualizações

article

23.9 : Carga em um Condutor

Lei de Gauss

4.3K Visualizações

article

23.10 : Campo Elétrico na Superfície de um Condutor

Lei de Gauss

4.4K Visualizações

article

23.11 : Campo Elétrico de uma Esfera Não Uniformemente Carregada

Lei de Gauss

1.3K Visualizações

article

23.12 : Campo Elétrico de Placas Condutoras Paralelas

Lei de Gauss

725 Visualizações

article

23.13 : Divergência e Rotacional do Campo Elétrico

Lei de Gauss

5.0K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados