Entrar

The heat capacity of a gas is the amount of heat energy required to raise the temperature of a unit mass of gas by one degree Celsius. It is an important thermodynamic property of gases, and its determination is essential in many industrial and scientific applications. Here are the steps to solve problems related to the heat capacities of gases:

Determine the type of gas: The heat capacity of a gas depends on its molecular structure and the degree of freedom of its molecules. Different types of gases have different heat capacities, and their values can be obtained from tables or empirical equations.

Calculate the specific heat capacity: A gas's specific heat capacity (c) is the amount of heat energy required to raise the temperature of a unit mass of the gas by one degree Celsius. It can be calculated using the equation:

Equation1

where M is the molar mass of the gas.

Determine the degree of freedom of the gas: In a dynamic system, the degree of freedom of a gas molecule is the number of directions in which it can move. It depends on the molecular structure and the number of atoms in the molecule. The degree of freedom determines the value of the heat capacity of the gas. For example, a monatomic gas like helium has only three degrees of freedom, whereas a diatomic gas like oxygen has five degrees of freedom.

Calculate the heat capacity at constant volume: The heat capacity at constant volume (CV) is the amount of heat energy required to raise the temperature of one mole of a gas by one degree Celsius at constant volume. It can be calculated using the equation:

Equation2

where d is the degree of freedom of the gas and R is the gas constant.

Calculate the heat capacity at constant pressure: A gas's heat capacity at constant pressure (CP) is the amount of heat energy required to raise the temperature of one mole of the gas by one degree Celsius at constant pressure. It can be calculated using the equation:

Equation3

Finally, determining the heat capacities of gases requires a combination of experimental measurements, empirical equations, and thermodynamic calculations. The values of the heat capacities depend on the molecular structure and the degree of freedom of the gas. They play a crucial role in many scientific and engineering applications.

Tags
Heat CapacityGasesSpecific Heat CapacityDegree Of FreedomMolar MassConstant VolumeConstant PressureThermodynamic PropertyEmpirical EquationsExperimental Measurements

Do Capítulo 19:

article

Now Playing

19.11 : Capacidade Térmica: Resolução de Problemas

Teoria Cinética dos Gases

440 Visualizações

article

19.1 : Equação de Estado

Teoria Cinética dos Gases

1.6K Visualizações

article

19.2 : Equação do Gás Ideal

Teoria Cinética dos Gases

5.9K Visualizações

article

19.3 : Equação de Van der Waals

Teoria Cinética dos Gases

3.5K Visualizações

article

19.4 : Diagrama pV

Teoria Cinética dos Gases

3.7K Visualizações

article

19.5 : Teoria Cinética de um Gás Ideal

Teoria Cinética dos Gases

3.1K Visualizações

article

19.6 : Energia Cinética Molecular

Teoria Cinética dos Gases

4.3K Visualizações

article

19.7 : Distribuição de Velocidades Moleculares

Teoria Cinética dos Gases

3.4K Visualizações

article

19.8 : Distribuição de Maxwell-Boltzmann: Resolução de Problemas

Teoria Cinética dos Gases

1.3K Visualizações

article

19.9 : Diagrama de Fase

Teoria Cinética dos Gases

5.5K Visualizações

article

19.10 : Caminho e Tempo Médio Livre

Teoria Cinética dos Gases

2.8K Visualizações

article

19.12 : Lei das Pressões Parciais de Dalton

Teoria Cinética dos Gases

1.2K Visualizações

article

19.13 : Velocidades de Escape de Gases

Teoria Cinética dos Gases

834 Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados