로그인

The heat capacity of a gas is the amount of heat energy required to raise the temperature of a unit mass of gas by one degree Celsius. It is an important thermodynamic property of gases, and its determination is essential in many industrial and scientific applications. Here are the steps to solve problems related to the heat capacities of gases:

Determine the type of gas: The heat capacity of a gas depends on its molecular structure and the degree of freedom of its molecules. Different types of gases have different heat capacities, and their values can be obtained from tables or empirical equations.

Calculate the specific heat capacity: A gas's specific heat capacity (c) is the amount of heat energy required to raise the temperature of a unit mass of the gas by one degree Celsius. It can be calculated using the equation:

Equation1

where M is the molar mass of the gas.

Determine the degree of freedom of the gas: In a dynamic system, the degree of freedom of a gas molecule is the number of directions in which it can move. It depends on the molecular structure and the number of atoms in the molecule. The degree of freedom determines the value of the heat capacity of the gas. For example, a monatomic gas like helium has only three degrees of freedom, whereas a diatomic gas like oxygen has five degrees of freedom.

Calculate the heat capacity at constant volume: The heat capacity at constant volume (CV) is the amount of heat energy required to raise the temperature of one mole of a gas by one degree Celsius at constant volume. It can be calculated using the equation:

Equation2

where d is the degree of freedom of the gas and R is the gas constant.

Calculate the heat capacity at constant pressure: A gas's heat capacity at constant pressure (CP) is the amount of heat energy required to raise the temperature of one mole of the gas by one degree Celsius at constant pressure. It can be calculated using the equation:

Equation3

Finally, determining the heat capacities of gases requires a combination of experimental measurements, empirical equations, and thermodynamic calculations. The values of the heat capacities depend on the molecular structure and the degree of freedom of the gas. They play a crucial role in many scientific and engineering applications.

Tags
Heat CapacityGasesSpecific Heat CapacityDegree Of FreedomMolar MassConstant VolumeConstant PressureThermodynamic PropertyEmpirical EquationsExperimental Measurements

장에서 19:

article

Now Playing

19.11 : Heat Capacity: Problem-Solving

The Kinetic Theory of Gases

439 Views

article

19.1 : 상태 방정식

The Kinetic Theory of Gases

1.6K Views

article

19.2 : 이상 기체 방정식

The Kinetic Theory of Gases

5.9K Views

article

19.3 : Van der Waals 방정식

The Kinetic Theory of Gases

3.5K Views

article

19.4 : pV 다이어그램

The Kinetic Theory of Gases

3.7K Views

article

19.5 : 이상 기체의 운동 이론

The Kinetic Theory of Gases

3.1K Views

article

19.6 : 분자 운동 에너지

The Kinetic Theory of Gases

4.3K Views

article

19.7 : 분자 속도의 분포

The Kinetic Theory of Gases

3.4K Views

article

19.8 : Maxwell-Boltzmann 분포: 문제 해결

The Kinetic Theory of Gases

1.3K Views

article

19.9 : 위상 다이어그램

The Kinetic Theory of Gases

5.5K Views

article

19.10 : 평균 자유 경로 및 평균 자유 시간

The Kinetic Theory of Gases

2.8K Views

article

19.12 : Dalton의 부분 압력의 법칙

The Kinetic Theory of Gases

1.2K Views

article

19.13 : 가스의 속도에서 벗어나기

The Kinetic Theory of Gases

832 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유