The ionic strength of a solution is a quantitative way of expressing the total electrolyte concentration of a solution. This concept was first introduced in 1921 by two American physical chemists, Gilbert N. Lewis and Merle Randall, while describing the activity coefficient of strong electrolytes. During the calculation of ionic strength (I or μ), all the cations and anions are considered. However, the concentration (c) of an ion with a greater charge number (z) has a greater contribution to the total ionic strength because the charge of the ion is squared.

While calculating ionic strength for a salt that will produce multiple equivalents of the same ion on dissociation, we need to account for the contribution from each ion. For example, the ionic strength of 0.1 mol/L Na2SO4 can be calculated as follows:

The concentration of Na+ is 0.2 mol/L because one molecule of Na2SO4 will dissociate to give two Na+ ions in solution. The ionic strength of dilute solutions can be calculated easily. However, in a more concentrated solution, the calculation becomes more complex and less accurate, as the salts do not dissociate completely. For example, in an aqueous solution of 0.025 mol/L MgSO4, 25% to 35% of MgSO4 exists as the ion pair MgSO4(aq).

The concept of ionic strength can be further extended to strong and weak acids. Because strong acids dissociate completely in solution, their ionic strengths can be calculated in the same way as those of dissociated salts. For weak acids, the concentration of ionized species can be calculated from the ionization constant value and then used for ionic strength determination. If the acid is very weak and mostly remains non-ionized, its contribution to the total ionic strength of the solution is negligible.

Tags
Ionic StrengthElectrolyte ConcentrationActivity CoefficientStrong ElectrolytesCationsAnionsCharge NumberDissociationNa2SO4MgSO4Ion PairsStrong AcidsWeak AcidsIonization ConstantIonized Species

Do Capítulo 2:

article

Now Playing

2.1 : Ionic Strength: Overview

Chemical Equilibria

971 Visualizações

article

2.2 : Força iônica: efeitos no equilíbrio químico

Chemical Equilibria

1.0K Visualizações

article

2.3 : Termodinâmica: Potencial e Atividade Química

Chemical Equilibria

716 Visualizações

article

2.4 : Termodinâmica: Coeficiente de Atividade

Chemical Equilibria

1.1K Visualizações

article

2.5 : Equilíbrios Químicos: Redefinindo a Constante de Equilíbrio

Chemical Equilibria

433 Visualizações

article

2.6 : Fatores que afetam o coeficiente de atividade

Chemical Equilibria

608 Visualizações

article

2.7 : Equilíbrios Químicos: Abordagem Sistemática para Cálculos de Equilíbrio

Chemical Equilibria

503 Visualizações

article

2.8 : Equilíbrio ácido-base: definição de pH baseada em atividade

Chemical Equilibria

469 Visualizações

article

2.9 : Diagramas de escada: equilíbrios ácido-base

Chemical Equilibria

365 Visualizações

article

2.10 : Diagramas de escada: Equilíbrios redox

Chemical Equilibria

363 Visualizações

article

2.11 : Diagramas de Escada: Equilíbrios de Complexação

Chemical Equilibria

270 Visualizações

article

2.12 : Equilíbrios de solubilidade: visão geral

Chemical Equilibria

467 Visualizações

article

2.13 : Equilíbrios de solubilidade: produto iônico da água

Chemical Equilibria

848 Visualizações

article

2.14 : Equilíbrios de Complexação: Visão Geral

Chemical Equilibria

472 Visualizações

article

2.15 : Equilíbrios de Complexação: O Efeito Quelato

Chemical Equilibria

339 Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados