Statistical inference techniques, paramount in hypothesis testing, differentiate into two broad categories: parametric and nonparametric statistics.

Parametric statistics, as the name suggests, assumes that data follow a specific distribution, often a normal distribution. This assumption enables robust hypothesis testing and estimation. Parametric methods, like the Student's t-test or Goodness-of-fit test, are frequently employed in biostatistics due to their robustness. For instance, comparing mean blood sugar levels between patients receiving different treatments becomes statistically reliable using parametric statistical methods.

On the other hand, nonparametric statistics do not make any assumptions about the data's underlying distribution. They come into play when data fail to meet the prerequisites of parametric tests or when handling ordinal or categorical data. These methods offer several advantages, including robustness to outliers and no specific distributional assumptions. However, they are generally less powerful than parametric tests when all the parametric assumptions are met.

Nonparametric statistical methods find use in various biostatistical applications. The Wilcoxon rank-sum test, which compares median survival times between two groups of lab animals, is one example. Another is the Kruskal-Wallis test, a nonparametric alternative to ANOVA for comparing medians of multiple groups.

Parametric and nonparametric statistics have unique significance and applications in biostatistics, with their use determined by the nature of the data and the statistical assumptions that can be made.

Do Capítulo 2:

article

Now Playing

2.9 : Statistical Inference Techniques in Hypothesis Testing: Parametric Versus Nonparametric Data

Biostatistics: Introduction

66 Visualizações

article

2.1 : Bioestatística: Visão geral

Biostatistics: Introduction

172 Visualizações

article

2.2 : Dados: Tipos e Distribuição

Biostatistics: Introduction

515 Visualizações

article

2.3 : Tendência Central: Análise

Biostatistics: Introduction

106 Visualizações

article

2.4 : Variabilidade: Análise

Biostatistics: Introduction

96 Visualizações

article

2.5 : Teste Estatístico de Hipóteses

Biostatistics: Introduction

1.8K Visualizações

article

2.6 : Precisão e erros no teste de hipóteses

Biostatistics: Introduction

116 Visualizações

article

2.7 : Métodos estatísticos para análise de dados paramétricos: ANOVA

Biostatistics: Introduction

167 Visualizações

article

2.8 : Métodos estatísticos para análise de dados paramétricos: teste t de Student e teste de qualidade de ajuste

Biostatistics: Introduction

1.4K Visualizações

article

2.10 : Tipos de estudos biofarmacêuticos: abordagens controladas e não controladas

Biostatistics: Introduction

87 Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados