Method Article
* Estes autores contribuíram igualmente
Nós descrevemos a adaptação de tomografia projeção óptica (OPT) 1 Para imagens no espectro infravermelho próximo, e da implementação de uma série de ferramentas computacionais. Estes protocolos permitem avaliações de massa pancreática β-célula (BCM) em amostras maiores, aumentar a capacidade de multicanal da técnica e aumentar a qualidade dos dados OPT.
Ao adaptar OPT para incluir a capacidade de formação de imagens de infravermelho próximo do espectro (NIR), que aqui ilustrar a possibilidade de corpos grandes de imagem de tecido pancreático, tais como o pâncreas de ratos, e para aumentar o número de canais (os tipos de células) que podem ser estudado em um único espécime. Iremos descrever a execução de um número de ferramentas computacionais que fornecem: posicionamento 1 / precisa do centro de um espécime (no nosso caso, o pâncreas) de massa (COM), o eixo de rotação (AR) 2; dois algoritmos / melhoradas para pós Alinhamento de ajuste que impede que as distorções geométricas durante a reconstrução tomográfica 2 e 3 / de um protocolo para aumentar a intensidade de equalização do sinal para relações de ruído nas determinações OPT baseados BCM 3. Além disso, descreve-se um suporte de amostras que minimiza o risco de movimentos involuntários do corpo de prova durante a aquisição de imagem. Juntos, estes protocolos permitem avaliações da distribuição BCM e othfuncionalidades er, a serem realizados em todo o volume do pâncreas ou de outros órgãos intactos (por exemplo, em estudos de transplante de ilhotas), com uma resolução até o nível de ilhotas de Langerhans individuais.
Produtoras de insulina β células são a chave para a capacidade do corpo para controlar a homeostase da glicose do sangue. Portanto, a avaliação da distribuição BCM pâncreas são fundamentais para muitas áreas de pesquisa pré-clínica diabetes. Na avaliação dos regimes terapêuticos, por exemplo, o impacto de ablação do gene alvo na diferenciação de células endócrinas ou estudos de etiologia diabetes em modelos de roedores para a doença muitas vezes dependem de tais análises. Tradicionalmente, esses tipos de avaliações basearam-se em demoradas abordagens estereológicas que são difíceis de realizar, devido ao tamanho e constituição anatómica complexa do pâncreas. Abordagens de resolução mais alta de imagem no presente (normalmente óptico), não fornecem a profundidade de penetração suficiente para permitir imagens de pâncreas em roedores. Por outro lado, as abordagens de imagem que não são limitadas pela sua profundidade de penetração (tipicamente nuclear) para proporcionar baixa resolução para resolver a distribuição BCM completo e são dificultadoscom a falta de agentes de contraste adequados 4,5.
Tomografia projeção óptica é uma modalidade de imagem 3D que permite que as avaliações de alta resolução de amostras biomédicas na mm a escala de 6 centímetros. Por este meio, a informação sobre a posição espacial e volume do indivíduo expressar a insulina de ilhotas de Langerhans pode ser extraído todo o volume do pâncreas em ratos normais e diabéticos 3,7-10. O objectivo do estudo é o de melhorar ainda mais a capacidade desta técnica para a avaliação do pâncreas β células, a sua distribuição endógena, quando enxertado em outros tecidos, a sua relação com outros componentes do pâncreas (tal como os tipos de células infiltrantes) e em maior preparações de pâncreas do que era possível anteriormente.
A tomografia de projeção óptico infravermelho próximo (NIR-OPT) de instalação
No protocolos abaixo, um scanner de OPT com base no conjunto original se descrito por Sharpe et al 1, adaptado para imagiologia na gama do infravermelho próximo são descritos e utilizados. Para a avaliação de canal único, do pâncreas do rato (por exemplo, de BCM), a SkyScan 3001 scanner (Bioptonics) pode ser usado.
Uma lâmpada de halogeneto de metal, que fornece a energia de excitação mais elevada do que uma lâmpada de arco de mercúrio a comprimentos de onda superiores a 650 nm, fornece a luz de excitação. A luz é transferida através de um guia de luz líquido. Uma combinação útil de fluorocromos e filtros passa banda para NIR fluorescência de imagem e separação de canais são mostrados na Figura 3. A luz emitida é detectada com uma câmara CCD de iluminação traseira, com elevada eficiência quântica no espectro NIR. A digitalização OPT é automatizado utilizando uma plataforma LabView que controla a câmera e motor de passo. Para suportar as amostras no tamanho de pâncreas de ratos intactos, um espelho de prata revestido e protegido numa cuvete grande é usado. Finalmente, um porta-amostras que elimina indesejadas movemen verticaists da amostra durante a análise foi concebida.
1. Preparação de amostras e Digitalização
1,1 Preparação da amostra
O procedimento seguinte é realizado essencialmente como descrito anteriormente 7.
1,2
O procedimento a seguir descreve como montar a amostra em agarose e anexá-lo ao suporte de amostras feitos (ver Figura 7) Antes de optar digitalização.
1,3 Posicionamento da amostra no AR
O protocolo seguinte descreve o procedimento para posicionar com precisão uma amostra usando o algoritmo de COM-AR. Este procedimento só é aplicável quando o ROI inclui toda a amostra. Para descrições detalhadas dos algoritmos, consulte Cheddad et al 2.
1,4 Digitalização
2. Processamento Computacional e Reconstrução
2,1 detecção desalinhamento pós-aquisição e correção (Um valor-tuning)
Na tomografia de projecção, é, em geral, necessárioatribuir um valor pós-alinhamento com as projeções para afinar a imagens posição ao longo do eixo de rotação antes da reconstrução. No entanto, um pequeno desvio no ângulo da câmara na direcção do eixo óptico pode causar não-uniforme de valores ao longo do comprimento da amostra e, assim, induzir distorções geométricas. Para evitar estas distorções, um método computacional para determinar o exato valor e unificada pós-alinhamento (um valor) durante toda a amostra pode ser aplicada 2.
2,2 Contraste equalização de histograma limitado adaptativo (CLAHE)
Para facilitar a detecção e a segmentação de objectos (ilhéus) que exibem sinais muito fracos, os quais se encontram em risco de ser "limiarizadas para fora" durante a reconstrução e / ou a segmentação para avaliações quantitativas, de um algoritmo de CLAHE pode ser aplicado a imagens de projecção. A operação é realizada com CLAHE duas transformações intensidade principais:
O nome de contraste limitada refere-se ao limite de grampo, o qual é configurado para evitar saturação pixels na imagem. Neste protocolo, o MATLAB função interna "adapthisteq" foi usado e aplicado com o padrão c limite de lábio de 0,01 e um tamanho de telha 256. Note, o tamanho da telha óptima deve ser testada empiricamente e pode variar de acordo com a amostra analisada. Mais detalhes sobre o algoritmo e os exemplos podem ser encontrados em Hörnblad et al 3.
Nota: As etapas de processamento acima listados computacionais (incluindo-COM AR, ajustando um valor e CLAHE, consulte 1,3-2,2) são construídas sobre algoritmos padrão e são executadas no MATLAB (Mathworks).
2,3 reconstrução tomográfica e iso-superfície renderização
Isolamento de ilhotas murina e procedimentos de transplante foram realizados em Processamento de Diabetes Research Institute celular pré-clínica e Core Modelo Translational sob protocolos analisados e aprovados pela Universidade de Miami Animal Care Institucional e Comitê de uso. O comitê de ética para pesquisas com animais, norte da Suécia, aprovou todos os outros experimentos envolvendo animais.
No relatório atual nós descrevemos um protocolo para a extração e processamento computacional de dados BCM em pâncreas de roedores (e outros tecidos) usando NIR-OPT (Figura 1). Como ilustrado na Figura 2, a partir de tecido autofluorescense espécime pancreática é a esperada redução acentuada no espectro NIR. Isto leva a um aumento significativo no sinal de média ao ruído (S: N) razão para a avaliação dos ilhéus de Langerhans de insulina rotuladas. Pelas adaptações de OPT de imagiologia, na parte do espectro NIR, tal como aqui descrito, pelo menos, três canais específicos podem ser visualizados com suficiente S: relação N para permitir a avaliação de tipos de anticorpos rotulados de células ao longo do volume do pâncreas murino com distinto canal de separação (ver a Figura 3 e 4). Aplicado a imagiologia de processos diabetogênicos e / ou avaliações de BCM, em geral, a técnica permite, assim, para a visualização e quantificação deáreas-insulina em relação à envolvente e / ou interagindo tipos de células (ver Figura 4). Estas considerações são, graças ao aumento da profundidade de penetração do tecido obtido na gama NIR possível realizar em amostras muito maiores do que anteriormente, incluindo o pâncreas de rato, que é 3-5 vezes maior do que o seu homólogo de rato (ver Figura 5). Independentemente do facto de comprimentos de onda visíveis ou NIR são utilizadas, a implementação de CLAHE pode facilitar significativamente OPT avaliações baseadas de BCM durante as diferentes condições genéticas e fisiológicas ao aumentar a sensibilidade de detecção da técnica (ver Figura 6). Um modelo para o suporte de amostras desenvolvido é mostrado na Figura 7.
Figura 1. Fluxograma que descreve os passos críticos para OPT análises baseadas de BCM na murpâncreas ine. O tempo requerido para avaliar um pâncreas de rato normal é 13-14 dias. A maioria das vezes é consumida durante o processamento de tecidos e imunohistoquímica (10 dias), a limpeza de tecidos requer aproximadamente 2 dias enquanto que a duração do varrimento é dependente do tempo de exposição necessário (normalmente cerca de 1 hora). O processamento subsequente tipicamente computacional é realizada dentro de um dia. Note, o protocolo de coloração relativamente longo é idealmente adequada para o processamento em lotes de grandes quantidades de amostras.
Figura 2. Sinal para relações de ruído para as avaliações de BCM em comprimentos de onda diferentes. Um rato do lobo duodenal do pâncreas, corado para a insulina e com um cocktail de fluorocromo-conjugados de anticorpos secundários (Alexa 488, 594, 680 e750), foi utilizada para determinar S: N proporções em comprimentos de onda diferentes. A Imagens, mostrar o quadro primeira projeção para cada canal de sinal. Gráfico B, que ilustra a média S: N, para cada canal de sinal. As proporções foram determinadas como a intensidade média da ilhota (com base em 215 ilhéus) dividida pela intensidade do fundo (a fluorescência tecido endógeno a partir do tecido exócrino). C, Gráfico mostrando S: proporções de N para os ilhéus individuais em cada um dos canais normalizados para o S: N obtidos para o canal 594 Alexa. Uma maneira ANOVA foi utilizado para análises estatísticas. Os níveis de significância indicados correspondem a ** p <0,01. Barra de escala em (A) corresponde a 1 mm. Clique aqui para ver maior figura .
Figura3. Separação de canais. A, anticorpos secundários conjugados com corantes Alexafluor listados na tabela foram imobilizados separadamente em proteinG-sepharose grânulos. B, As contas fluorescentes foram então embebidas em diferentes níveis de um fantasma de agarose e visualizados utilizando filtros indicados.
Figura 4. OPT imaging multicanal baseada na pesquisa da diabetes. A, OPT base iso-superfície de reconstrução de um pâncreas (12 semanas, lobo duodenal) do diabético não obeso (NOD) modelo de diabetes do tipo 1. O espécime é corado para a insulina (células islet β, pseudo cor azul); músculo liso α-actina (vasos sanguíneos, vermelho) e CD3 (linfócitos T infiltrantes, verde). Os anticorpos secundários utilizados foram correspondentes; Cy3, IRDye-680-750 e DyeLight respectivamente. Oinserções (A'-A'' ') mostram os canais de sinal individuais. B, OPT imagem (golpe de vista) de um lobo de fígado de rato (lateral lobus sinistros) enxertado com ilhotas singênicos e fotografada com duas semanas NIR-OPT após a transplantação. As ilhotas de insulina estão expressando pseuodocolored em azul e do músculo liso α-actina vasos positivos estão em vermelho. A abordagem permite avaliações da distribuição do enxerto ilhota dentro da rede vascular. Barras de escala correspondem a 1 mm.
Figura 5. NIR-OPT facilita a criação de imagens de espécimes de maiores dimensões. A, render Iso-superfície da distribuição BCM em pâncreas de rato a partir do modelo Zucker Fatty para a diabetes do tipo 2 (lóbulo esplénica em 9 meses), exemplificando a possibilidade de espécime imagem no rato escala de pâncreas por NIR-OPT. Conforme determinadopor esta técnica é apresentada no lobo ~ 6 vezes maior (v / v) do que o seu homólogo de rato e abriga 10.139 expressando insulina das ilhotas de Langerhans, cuja célula-β volume faz-se 1,32% do volume total lobular. B, secção Tomographic correspondente à linha a tracejado em (A) ilustra que ilhotas de todas as profundidades do tecido são detectados. C, Iso-superfície de processamento da distribuição BCM em pâncreas de rato (lobo esplénica em 8 semanas) exibido como uma referência de tamanho. O lóbulo exibida abriga 2.490 ilhotas de insulina que expressam cujas células β volume faz-se 0,89% do volume total lobular. O pâncreas estão manchadas com o GP anti-insulina seguido de Alexa594 conjugado de cabra anti-GP (mouse) e Donkey IRDye 680 conjugado anti-GP (rato) anticorpos respectivamente. Os espécimes em (AC) são representadas à escala e a barra de escala em (C) corresponde a 2 mm.
Figura 6. CLAHE facilita a detecção de ilhotas do pâncreas murino por imagem OPT. AC, representante iso-superfície imagens OPT prestados de uma pâncreas do rato C57Bl / 6 (lobo esplênica em 8 semanas) marcada para a insulina. Iso-superfície reconstruções de imagens de OPT foram realizadas antes (A, verde pseudo colorida) e após o protocolo CLAHE foi aplicado (B, pseudo cor vermelha). C, sobreposição dos dados não normalizadas, em (A) e os dados processados CLAHE em (B). C'-C ", sobreposição de ampliação elevada representativas dos não normalizados (A) e CLAHE processada (B) as imagens. Tal como mostrado pela presença de" vermelho "somente ilhotas, o script CLAHE facilita a detecção de sinal pequena e baixa ilhotas intensidade. No exemplo actual, o espécime descrito (após CLAHE processamento), continham 2.419 ilhotas com um volume de 1,74 mm 3 (Números com base nos dados correspondentes de projecção não transformados era 1.057 ilhotas with um volume de 1,77 mm 3). D e E, a partir de dados de exemplo de controlo (D) e o modelo de ratinho ob / ob para o diabetes tipo 2 12 (E), 6 meses de execução do protocolo CLAHE. Notar o aumento massivo no tamanho geral dos ilhéus pancreáticos ob / ob (E). Em (D) e (E) do esboço pâncreas (cinza) está baseado no sinal de autofluorescência de tecidos. Barra de escala em C é 500 mm em CA. Barra de escala em C "corresponde 200 um em C 'e C'' bar. Escala em E corresponde a 1 mm em (D) e (E). Imagens em (AC) são adaptados de Hörnblad et al 3 e foram gerados utilizando o Bioptonics scanner de 3001.
Figura 7. Porta-amostras para a fixação das amostras OPT. O espécime é assegurado pela inserção de agulhas através do espaçador de agarose através dos orifícios pré-perfurados na flange. O suporte encontra-se articulado para o motor passo a passo através de umíman forte localizada na sua base. Esta configuração omite o uso de colas instáveis e evita movimentos indesejados da amostra durante a análise.
As técnicas descritas para a imagiologia OPT permite a extracção de parâmetros espaço-quantitativa em todo o volume do pâncreas murino. Devido às limitações na resolução alcançável para este tipo de mesoscópica imagiologia deve notar-se que, tal como para a maioria das modalidades de imagiologia, maior a amostra menor a resolução da (Embora a utilização de uma resolução mais alta CCD deve aumentar a resolução da digitalização OPT) . Assim, para a avaliação dos lóbulos intactos pancreáticas de rato, a técnica actualmente não fornece resolução única célula embora próximo (aproximadamente 15-20 mm) 7. Ainda assim, para a extracção de distribuição BCM no pâncreas de rato os protocolos proporcionam dados que corresponde bem mais do que as obtidas pelo ponto de contagem, por exemplo 3,13 a morfometria Deve notar-se que, embora a execução do protocolo CLAHE permite a detecção de um número significativamente maior ilhotas , estes ilhéus são geralmente menores e não contrite substancialmente para os totais de células β volumes.
Os protocolos de imuno-histoquímica envolvidos são relativamente longos (até duas semanas), mas as mãos reais no tempo de preparação da amostra é pequeno e, portanto, a técnica é bem adequado para o estudo de grandes grupos de animais 9. Se o potencial de padrões de distribuição heterogêneas é um foco para a investigação, deve sublinhar-se que os cuidados devem ser tomados nas etapas sobre fixação e montagem para evitar que o tecido pancreático torna-se fixado de maneira desfavorável e um apartamento ("se espalhar" ) montagem do tecido deve ser buscado para facilitar tais avaliações.
Uma questão importante no desempenho é que OPT COM a amostra é fixada no eixo de rotação e que não se move, na vertical ou na horizontal, durante o processo de digitalização. Portanto, é essencial ter uma configuração estável mecânico e um sistema que funcione bem para attaching a amostra. Resolvemos este problema através da construção de uma nova montagem (Figura 7).
Geometria paralela não era verdade para o nosso NIR-OPT ou scanner Bioptonics 3001, que foi detectado como um deslocamento vertical entre a parte traseira e as posições da frente de objetos periféricos nas imagens gravadas de projeção. Ao ajustar o objeto a distância da fonte no arquivo de log do scanner respectivo (ver 2.3.1) que pode melhorar significativamente a qualidade de nossos dados e corrigir distorções geométricas nas bordas longe das imagens de projeção, que é de particular importância quando avaliar os espécimes maiores.
No protocolo atual, nós fornecemos uma sugestão de conjuntos de filtros que permitem a visualização de três diferentes canais específicos e uma "anatomia" do canal nas avaliações de preparações pancreáticas intactos. Obviamente essas configurações pode ser modulada para melhor atender os fluorocromos utilizados para um determinado estudo, embora, como acontece com todas as formas de fluorescênciamicroscopia cento, o risco potencial de sinal de sangramento através deve ser cuidadosamente avaliada. O estudo das ilhotas de insulina marcados com fluorocromos que são excitados acima de 750 nm não foi ainda possível por nós usando a lâmpada de halogeneto de metal de que se utiliza o conjunto. É possível que a câmara com ainda maior eficiência quântica nos comprimentos de onda relevantes, em combinação com fontes de luz alternativas (por exemplo, lasers de diodo) pode aumentar o potencial de NIR-OPT adicional e permitir a imagiologia em comprimentos de onda mais elevados.
OPT de imagem é uma técnica altamente versátil para avaliações espaciais e quantitativos da amostra biomédica na escala de milímetros cm. Embora os protocolos aqui apresentados foram desenvolvidos com a finalidade principal do pâncreas / diabetes de pesquisa que deverá ser possível traduzir a pesquisa sobre as outras espécies, tipos de amostras e os marcadores. Pelo potencial de visualizar vários canais distintos em preparações pancreáticas intactas, NIR-OPT imagem fUTRAS tem potencial como uma ferramenta para avaliar a especificidade de absorção de agentes de contraste destinados a avaliação não-invasiva de outras modalidades de imagem, desde que estes agentes de contraste podem ser concebidas para transportar também um fluoróforo detectável por OPT.
Não há conflitos de interesse declarados.
Lindström Dr. P. é reconhecida por fornecer ob / ob. J. Lehtonen é reconhecido para a assistência com produção de vídeo e Gilbert J. ajuda com edição. Este estudo foi financiado por doações do Instituto de Pesquisa de Diabetes Foundation (AP), o Juvenile Diabetes Research Foundation (AP e UA), a Comissão Europeia (FP-7, Grant acordo não:. IP CP-228933-2) (JS e UA), as Fundações Kempe, Umeå University e do Conselho Sueco de Pesquisa para UA
Name | Company | Catalog Number | Comments |
Nome do reagente / Material | Companhia | Número de catálogo | Comentários |
Metanol | Scharlau | ME03162500 | |
30% de H 2 O 2 | Scharlau | HI01362500 | |
Álcool benzílico | Scharlau | AL01611000 | |
Benzoato de benzilo | Scharlau | BE01851000 | |
Agarose de baixo meltingpoint | LONZA | 50100 | |
Paraformaldeído (PFA) | Sigma-Aldrich | 158127 | |
DMSO | Sigma-Aldrich | D5879 | |
Triton X100 | Sigma-Aldrich | T8787 | |
Rato anti-Asma-Cy3 | Sigma-Aldrich | C6198 | O anticorpo primário |
Coelho anti-CD3 | Sigma-Aldrich | C7930 | O anticorpo primário |
Cobaia anti-Ins | DAKO | A0564 | O anticorpo primário |
Donkey anti GP-IRDye680 | LI-COR Biosciences | 926-32421 | Anticorpo secundário |
De cabra anti-Rb DyeLight750 | Thermo Scientific | 35570 | Anticorpo secundário |
Cabra anti GP-Alexa594 | Molecular Probes | A-11076 | Anticorpo secundário |
Anti-cabra GP Alexa488 | Molecular Probes | A-11008 | Anticorpo secundário |
Anti cabraGP-Alexa594 | Molecular Probes | A-11012 | Anticorpo secundário |
Cabra anti GP-Alexa680 | Molecular Probes | A-21076 | Anticorpo secundário |
Cabra anti GP-Alexa750 | Molecular Probes | A-21039 | Anticorpo secundário |
OPT SkyScan 3001 | Bioptonics | OPT-Scanner | |
Leica MZ FLIII | Leica Microsystems | Estereomicroscópio | |
Leica Objetivo 0.5x | Leica Microsystems | 10446157 | |
Leica Camera adaptador 1.0x | Leica Microsystems | 10445930 | |
EL6000 HQI | 11504115 | Lightsource | |
Guia Liquid Light | 11504116 | ||
Cuveta | Hellma Analytics | 6030-OG | 55 x 55 x 52,5 mm |
Espelho | Edmund Optics | F68-334 | 50 x 50 mm |
Andor Ikon-M | Andor Tecnologia | DU934N-BV | Retro-iluminado CCD |
Filterset | Tecnologia Chroma | 41.021-MZFLIII | TXR, Alexa-594, Cy3 |
Filterset | Tecnologia Chroma | 41.022-MZFLIII | IRDye680, Alexa-680 |
Filterset | Tecnologia Chroma | 49.037-MZFLIII | Dylight750, Alexa-750 |
ProteinG Sepharose-esferas | GE Healthcare | 17-0618-01 | Protein G Sepharose 4 Fast Flow |
Azida de sódio | Sigma-Aldrich | 08591 | Azida de sódio a 0,1 M solução |
A correction was made to Near Infrared Optical Projection Tomography for Assessments of β-cell Mass Distribution in Diabetes Research. In Protocol section 1.1, the order of the listed chemicals MeOH:H2O2:DMSO has accidentally been switched and should instead be MeOH:DMSO:H2O2.
Protocol section 1.1 was changed from:
Incubate the tissue in freshly prepared MeOH:H2O2:DMSO bleaching buffer in a 2:1:3 ratio at RT for 24 hr to quench endogenous tissue fluorescence. For larger samples, exchange to new bleaching buffer and incubate for another 24 hr.
to:
Incubate the tissue in freshly prepared MeOH:DMSO:H2O2 bleaching buffer in a 2:1:3 ratio at RT for 24 hr to quench endogenous tissue fluorescence. For larger samples, exchange to new bleaching buffer and incubate for another 24 hr.
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados