É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Uma melhor método para mecanicamente teste ancoragem óssea para superfícies de implantes candidatos é apresentada. Este método permite o alinhamento da força de ruptura exactamente perpendicular, ou paralela, em relação ao plano da superfície do implante, e proporciona um meio preciso para dirigir as forças de rompimento para uma região peri-implante exacta.
Os recentes avanços na ciência dos materiais, levaram a um aumento substancial na complexidade topográfica da superfície do implante, tanto em um micro-e nano-escala. Como tal, os métodos tradicionais de descrever superfícies de implantes - Determinantes nomeadamente numéricos de rugosidade da superfície - são insuficientes para prever o desempenho in vivo. Teste biomecânico fornece uma plataforma precisa e comparativa para analisar o desempenho de superfícies de biomateriais. Um método melhorado de ensaios mecânicos para testar a ancoragem do osso sobre superfícies de implantes candidatos é apresentada. O método é aplicável a ambas as fases iniciais e posteriores de cura e pode ser utilizado para qualquer gama de superfícies quimicamente ou mecanicamente modificados - mas não as superfícies lisas. Implantes personalizados retangulares são colocados bilateralmente no fêmur distal de ratos Wistar machos e recolhidos com o osso circundante. Corpos de prova são preparados e vaso usando um romance molde separatista ea perturbaçãoensaio é realizado com uma máquina de ensaios mecânicos. Este método permite o alinhamento da força de ruptura exactamente perpendicular, ou paralela, em relação ao plano da superfície do implante, e proporciona um meio preciso e reprodutível para isolar uma região peri-implante exacto para o teste.
Avaliando a ancoragem do osso sobre superfícies de implantes endosseous tem sido o foco de considerável atenção, para o qual muitos métodos de teste mecânicos têm sido descritos 1,2. Todos estes métodos de impor uma força para romper o modelo de osso / implante a ser empregue, e pode ser agrupadas em cisalhamento, geralmente apresentado como de extracção ou modelos de pull-out 3,4, inverter binário 3,5, e os tipos de tracção 6, 7. Geralmente, em tais testes, quer de osso ou de materiais de implante 8 (no caso de vidros e cerâmicas quebradiças 9,10) é fracturada e, assumindo alguma forma de fixação tenha ocorrido, os restos de interface osso / implante (pelo menos parcialmente) intactos. Tais resultados experimentais significa não só que a força necessária para provocar a ruptura (ou ruptura) do modelo não é a força necessária para separar a interface osso / implante 11,12, mas também que a área de superfície complexa do plano de fractura criada pode ser refratária aomedição precisa. No entanto, tais ensaios podem ser clinicamente relevante, uma vez que proporcionam um medidor comparativo da capacidade de implantes de diferentes desenhos de superfície a ser ancorado no osso. No entanto, também deve-se notar que tais comparações são válidas apenas dentro de um modelo experimental, enquanto que as comparações entre os modelos experimentais são repleto de dificuldades desde investigadores usam diferentes espécies de animais exibindo ou lamelar ou tecido ósseo; trabecular ou osso cortical modelos de cura, e diferente mecânico geometrias e as condições de teste.
Em um esforço para obter uma medição da resistência à tracção na interface osso / implante, muitos investigadores têm utilizado a área de superfície nominal do implante, para derivar um valor de "força de tracção", uma vez que a resistência à tracção é medida como a força por unidade de área. Isto é claramente uma aproximação dada, conforme explicado acima, de que a interface osso / implante permanece intacta em muitos dos ensaios de desregulação empregared. Além da medição da área da superfície dos implantes, particularmente em superfícies topograficamente complexas, é limitada pela resolução da técnica de medição, como discutido por Ronald et al. 13 No entanto, tal como revisto por Brunski et al. 2, quando a área superficial nominal de um implante é tomado em consideração, as diferenças aparentes na "força de tracção" associado com diferentes desenhos de superfície de implante são negados, sugerindo que as superfícies de implante com maior área de superfície proporcionam maiores áreas de contacto com o osso / implante e, consequentemente, exige mais força para fracturar o modelo. Assim, a implicação é que mais topograficamente complexa superfícies podem aumentar o contato osteogênese, o que resulta em maior contato osso implante (BIC) e valores resultantes de ruptura mais elevadas em testes mecânicos. Contato osteogênese é o produto de dois fenômenos distintos: osteocondução e formação óssea. Na verdade, temos mostrado que aumenta de osteocondução em topógrafosuperfícies ticamente complexas possível quantificada medindo resultante BIC 14 e esses superfícies também resultar superior ruptura mecânica valoriza 12.
No entanto, é salutar notar que o osso peri-implante pode formar através de dois mecanismos. Em células de contacto da osteogénese de origem mesenquimal migram para a superfície do implante (osteocondução), diferenciar-se em células de osso, e elaborar de novo na superfície da matriz óssea do implante (formação do osso). A primeira matriz óssea elaborado é uma linha de cimento mineralizado como visto na remodelação óssea normal 15 (há muita confusão na literatura sobre esta estrutura biológica mineralizado que às vezes é pensado para ser un-mineralizado 1 ou é sincretizado com todas as interfaces no osso 16 - para uma discussão completa sobre este tema ver Davies e Hosseini 17). Contato osteogênese é uma condição essencial para o fenômeno do osso-Ligação, mas não é essencial para o crescimento ósseo 18. A linha de cimento mineralizado do osso é mecanicamente mais fraco do que o compartimento de colagénio mineralizado de osso 19. Assim, intuitivamente, se a interdigitação de matriz de linha de cimento com características nano implante é em comparação com o tecido ósseo em crescimento em macro características do implante, então a força mecânica necessária para romper a primeira seria, razoavelmente, ser prevista para ser menor do que o segundo, e nós demonstraram recentemente esta experimentalmente 12.
Óssea peri-implantar também pode formar por osteogênese distância. Nesse caso, o osso é depositado sobre a superfície do osso velho e torna-se progressivamente para mais perto da superfície do implante resultando numa interface compreendendo matriz amorfa e os restos de células osteogénicas 20. Em geral, a osteogênese distância está associada a superfícies de implantes endósseos suaves, ou usinadas e é visto frequentemente na cicatrização do osso cortical, enquanto microtopographicasuperfícies lly complexos estão associados com o contato osteogênese que é mais típico de cicatrização óssea trabecular. Modelos de teste de tração, utilizando superfícies de implantes lisos e reparo ósseo cortical foram capazes de testar as propriedades adesivas deste amorfo ausente matriz biológica da osteogênese de contato associadas a superfícies topograficamente complexos, e têm demonstrado que a chamada união "bioquímico" que ocorre fornece uma componente menor dos valores de "resistência à tração", relatou com superfícies topograficamente complexas 21. Pelo contrário, utilizando um modelo de cura de osso trabecular, Wong et al. Mostrou 22 "uma excelente correlação" entre o implante e a rugosidade da superfície de carga de extracção falha, e indicaram que a ligação química de facto um papel insignificante na ancoragem do osso para o implante superfície. Embora seja provável que tanto contato e osteogênese distância ocorrem, em diferentes graus, em todos endóssea peri-implant compartimentos de cura, superfícies microtopographically complexos têm se mostrado particularmente vantajoso na cicatrização óssea trabecular compartimentos 23. Estes últimos são classificados como Classe III ou Classe IV osso na literatura dental 24.
Nosso propósito foi o de concentrar-se nos mecanismos de contato osteogênese ea ancoragem óssea / implante resultante que pode acontecer em um ambiente de cura óssea trabecular. Esta ancoragem, que é dependente da topografia da superfície do implante (veja acima), pode ocorrer em intervalos de-escala diferente. Por um lado, apenas as características do implante submicrométricas estão implicados em osso de ligação - como descrito por interdigitação da matriz de linha de cimento ósseo com essas superfícies, e visto em vidros bioactivos, de cerâmica e óxidos de metal reticulado. Por outro lado, o tecido (por vezes completo com vascularização sanguínea) osso pode crescer em multi-micron, ou macro-escala, características do implante superfícies 18. Ambos os casos result, em uma forma de ancoragem do osso à superfície do implante, embora os mecanismos são claramente diferentes. No entanto, uma falha comum da maioria dos métodos de testes mecânicos referenciados acima é alinhar a força de ruptura em um plano exactamente perpendicular, ou paralela à da superfície do implante (consoante o modo de tracção ou de corte é empregue). Relatamos aqui um método que supera essa limitação.
1. Implant projeto, fabricação e Tratamento de Superfícies
Nota: Vários tratamentos químicos ou mecânicos podem ser aplicados para criar uma topografia da superfície desejada e / ou química, e estas irão depender da natureza do questi experimentalpara ser abordado. No exemplo aqui fornecido, um grupo de titânio comercialmente puro (Ticp) implantes foi submetida a decapagem com jacto de granalha (GB) - um processo subtractivo - para criar um microtopografia complexo. Metade dos implantes eram, em seguida, ainda modificado pela adição de fosfato de cálcio (PAC) nanocristais para criar um nanotopografia sobreposta (GB-DCD).
Nota: Durante a visualização de micro-superfície do grão a jacto, em comparação com o nano superfície modificada, em ampliação de 10.000 X, não há nenhuma diferença óbvia em características de superfície. No entanto, quando visualizado a 100.000 X ampliação, diferenças tornam-se bastante evidente (Figura 2). Foi previamente mostrado que tais modificações de superfície têm efeitos profundos sobre a osteocondução 14.
2. Modelo Animal e Procedimento Cirúrgico
3. Amostra colheita
4. Ensaios Mecânicos
Um molde separatista personalizado foi projetado para pote cada espécime, a criação de um método reprodutível e preciso de preparação de amostras para ensaios mecânicos. A concepção permite que o isolamento de uma região de 0,5 mm de osso peri-implante para uma zona de teste consistente, enquanto mantém a amostra e centrado completamente na horizontal, durante o processo de envasamento, permitindo a aplicação de uma força directamente perpendicular à superfície do implante. Veja a Figura 5 para desenhos de engenharia completos e Figura 6 para os componentes finais.
Nota: Conduta Todos os testes usando um aparelho de ensaios mecânicos, operando a uma velocidade de 30 mm / min. Para uma avaliação qualitativa do seguinte teste de osso residual, um microscópio de dissecção podem ser utilizadas.
Todos os animais aumentaram sua atividade ambulatorial com o tempo após a sua recuperação da cirurgia. Isto é importante porque a carga tem efeitos diferenciados sobre topografias de faixas de escala diferentes, como já relatado recentemente 12. Uma curva representativa de força / deslocação para os espécimes de teste seguintes testes mecânicos é apresentada na Figura 9A, e os dados médios para cada uma das superfícies do implante são apresentados na Figura 9B. ...
O modelo de teste mecânico aqui apresentado fornece um método melhorado para avaliar a ancoragem do osso sobre superfícies de implantes candidatas, uma vez que permite precisas perpendicular, ou paralela, o alinhamento da amostra de teste com o eixo da força de ruptura aplicado, e limita a zona de fractura dentro de meio milímetro da superfície do implante. O modelo pode ser facilmente incorporado em estudos que comparam a eficácia de qualquer gama de, quimicamente ou mecanicamente, as superfícies modificadas, m...
Os autores receberam financiamento e materiais de apoio da Biomet 3i (Palm Beach Gardens, FL, EUA). Biomet 3i não tinha parte na elaboração deste manuscrito ou o desenho de experimentos descritos.
Os autores gostariam de agradecer a Biomet 3i pelo seu contínuo apoio financeiro e, em particular Randy Goodman para ajudar no projeto e na fabricação de peças personalizadas. Spencer Bell é um destinatário de uma Bolsa de Pós-Graduação Industrial, fornecido pelas Ciências Nacionais e Conselho de Pesquisa em Engenharia do Canadá (NSERC). Também gostaríamos de agradecer ao Dr. John Brunski por seu feedback muito valioso durante a preparação do manuscrito.
Name | Company | Catalog Number | Comments |
Dulbecco’s Phosphate Buffer solution (DPBS) | Gibco Life Technologies, Burlington, ON, Canada | 14190-250 | |
10% neutral buffered formalin solution | Sigma-Aldrich Co. LLC., Canada | HT501128-4L | |
Custom-designed rectangular implants (commercially pure titanium; dimensions: 4mm x 2.5mm x 1.3mm with a 0.7mm hole drilled centrally down the long axis) | Biomet 3i, FL, USA | N/A | |
Custom-designed breakaway mould | Biomet 3i, FL, USA | N/A | |
Isoflurane | Baxter Internationl Inc. | N/A | |
Buprenorphine | Bedford Laboratories | N/A | |
10% betadine | Bruce Medical, MA, US | FR-2200-90 | |
Scalpel | Almedic, Medstore, University of Toronto, Canada | 2586-M36-0100 | |
Scalpel blade #15 (sterile) | Magna, Medstore, University of Toronto, Canada | 2586 | |
Periosteal elevator #24G | Spectrum Surgical, OH, USA | EX7 | |
Forceps | Almedic, Medstore, University of Toronto, Canada | 7747-A10-108 | |
Tissue forceps | Almedic, Medstore, University of Toronto, Canada | 7722-A10-308 | |
Scissors | Almedic, Medstore, University of Toronto | 7603-A8-240 | |
Absorbant Fabric General Purpose Drape (sterile) | Vitality Medical | 1089 | |
Gauze (non-sterile) | VWR | 89133-260 | |
Needles 25G X 5/8" (disposable) | BD, Canada | 305122 | |
Syringes (sterile) | VWR, Canada | CABD309653 | |
Needle Driver | Almedic, Medstore, University of Toronto, Canada | A17-132 | |
Dynarex Surgical gloves (sterile) | Amazon.com | 2475 | |
Surgical masks | Fisherbrand, Medstore, University of Toronto, Canada | 296360759 | |
0.9% sterile saline | House brand, Medstore, University of Toronto, Canada | 1011-L8001 | |
Hair clippers | Remington, US | N/A | |
4-0 Polysorb | Syneture | SL5627G | |
9mm Wound Clips | Becton Dickinson, MD, USA | 427631 | |
ImplantMED DU 900 and WS-75 dental hand piece | W&H Dentalwerk, Austria | DU1000US | |
1.3 mm twist drill | Brasseler, GA, USA | 203.21.013 | |
1.3 mm dental burr | Biomet 3i, FL, USA | custom | |
1.2 mm cylindrical side-cutting burr | Biomet 3i, FL, USA | custom | |
Cylindrical diamond burr | Brasseler, GA, USA | H1.21.014 | |
High speed dental drilling system | Handpiece: KaVo Dental Corporation, IL, USA | N/A | |
Handpiece Control: DCI International, OR, USA | |||
99.5% Ultra Pure sucrose | BioShop Canada Inc., Burlington, ON, Canada | 57-50-1 | |
Flowable dental composite | Filtek Supreme Ultra Flowable Restorative, 3M ESPE, St Paul, Minnesota, USA | 6033XW | |
Sapphire Plasma Arc high intensity curing light | Den-Mat Holdings, Santa Maria, CA, USA | N/A | |
Instron 4301 with 1000 N load cell | Instron, Norwood, MA, USA | N/A | |
Leica Wild M3Z Stereozoom dissecting microscope | Leica, Heerbrugg, Switzerland | N/A | |
QImaging Micropublisher 5.0 RTV digital camera coupled with QCapture 2.90.1 acquisition software | QImaging, Surrey, BC, Canada | N/A | |
Electronic digital caliper | Fred V. Fowler Company, Inc., Newton, MA, USA | N/A | |
Mechanical testing instrument | Instron, Norwood, MA, USA | N/A |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados