É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Alterações em metabólitos neuroativos Quinurenina caminho (KP) estão implicadas em doenças psiquiátricas. Investigar os resultados funcionais de um Quinurenina alterado via metabolismo na vivo em roedores pode ajudar a elucidar as novas abordagens terapêuticas. O protocolo atual combina abordagens bioquímicas e comportamentais para investigar o impacto de um desafio de Quinurenina aguda em ratos.
O caminho da Quinurenina (KP) de degradação do triptofano tem sido implicado em transtornos psiquiátricos. Especificamente, o metabólito derivado astrocyte cinurênico ácido (KYNA), um antagonista em ambos N-metil-d-aspartato (NMDA) e α7 os receptores nicotínicos de acetilcolina (α7nACh), tem sido implicado em processos cognitivos na saúde e na doença. Como CLAYDSON níveis são elevados no cérebro de pacientes com esquizofrenia, uma avaria no glutamatérgico e receptores colinérgicos é acreditada para ser causalmente relacionadas com disfunção cognitiva, um domínio principal da psicopatologia da doença. CLAYDSON pode desempenhar um papel significativo pathophysiologically em indivíduos com esquizofrenia. É possível elevar CLAYDSON endógena do cérebro de roedor, tratar os animais com o Quinurenina bioprecursor direto, e estudos pré-clínicos em ratos demonstraram que elevações agudas na CLAYDSON podem impactar seus processos de aprendizagem e memória. O atual protocolo descreve esta abordagem experimental em detalhe e combina a) uma análise bioquímica da Quinurenina níveis no sangue e cérebro formação de CLAYDSON (usando cromatografia líquida de alta eficiência), teste b) comportamental para sondar o dependentes do hipocampo memória contextual (paradigma de vacância passiva) e c) uma avaliação do comportamento de sono-vigília [gravações telemetria combinando o eletroencefalograma (EEG) e eletromiografia (EMG) sinais] em ratos. Tomados em conjunto, uma relação entre elevados CLAYDSON, sono e cognição é estudada, e este protocolo descreve detalhadamente uma abordagem experimental para compreender os resultados da função de elevação Quinurenina e CLAYDSON formação na vivo em ratos. Resultados obtidos através de variações deste protocolo irão testar a hipótese de que o KP e CLAYDSON servem papéis pivotal em modulação sono e cognição nos Estados de saúde e na doença.
A KP é responsável pela degradação de quase 95% do aminoácido essencial triptofano1. O cérebro de mamíferos, Quinurenina tidas em astrócitos é metabolizada na molécula pequena neuroativos CLAYDSON principalmente pela enzima Quinurenina aminotransferase (KAT) II2. CLAYDSON age como um antagonista nos receptores NMDA e α7nACh no cérebro2,3,4, e também alvos receptores, incluindo receptor aril hidrocarboneto (AHR) e a G-proteína de sinalização acoplado receptor 35 (GPR35)5 ,6. Em animais experimentais, elevações no cérebro CLAYDSON foram mostradas para prejudicar seu desempenho cognitivo em uma matriz de ensaios comportamentais2,7,8,9,10 . Uma hipótese emergente sugere que CLAYDSON desempenha um papel central na modulação de funções cognitivas pelo impacto de vigília-sono comportamento11, assim apoiam o papel das moléculas de derivados astrocyte em modulando a neurobiologia do sono e cognição,12.
Clinicamente, elevações em CLAYDSON foram encontradas no líquido cefalorraquidiano e tecido cerebral de post-mortem de pacientes com esquizofrenia13,14,15,16, um transtorno psiquiátrico debilitante caracterizada por deficiências cognitivas. Pacientes com esquizofrenia são também muitas vezes atormentados por distúrbios de sono que podem agravar a doença17. Compreender o papel do metabolismo de KP e CLAYDSON na modulação de uma relação entre o sono e cognição, particularmente entre a aprendizagem e memória, pode levar ao desenvolvimento de novas terapias para o tratamento destes resultados pobres em esquizofrenia e outros doenças psiquiátricas.
Um método confiável e consistente para a medição de metabólitos de KP é importante assegurar que as pesquisas emergentes de diferentes instituições podem ser integradas a compreensão científica da biologia de KP. Neste momento, descrevemos a metodologia para medir Quinurenina no plasma de ratos e CLAYDSON em cérebro de ratos por cromatografia líquida de alto desempenho (HPLC). O presente protocolo, que faz uso de uma detecção fluorimétrica na presença de Zn2 +, foi desenvolvido por Shibata18 e mais recentemente adaptado e otimizado para derivatize com acetato de zinco de 500 mM como o reagente pós-coluna, permitindo a a detecção de endógena, quantidades nanomolar de CLAYDSON no cérebro11.
Para estimular a produção de CLAYDSON endógena de novo como descrito no presente protocolo, a Quinurenina bioprecursor direto é injectada intraperitonealmente (i.p.) em ratos. Em combinação com avaliações bioquímicas para determinar o grau de produção CLAYDSON, os impactos de uma Quinurenina desafiam a memória hipocampo-dependente (paradigma de vacância passiva) e a arquitetura de sono-vigília (sinais de EEG e EMG) é também investigadas,11. Uma combinação destas técnicas permite o estudo do impacto bioquímico e funcional de um Quinurenina desafio na vivo em ratos.
Nossos protocolos experimentais foram aprovados pelo Comitê de utilização e cuidados animais institucionais da Universidade de Maryland e seguiram guia do National Institutes of Health para o cuidado e o uso de animais de laboratório.
Nota: O adulto ratos machos Wistar (250-350 g) foram utilizados em todos os experimentos. Coortes separadas dos animais foram utilizados para análise bioquímica, experimentos comportamentais e gravações de sono-vigília. Os animais foram alojados em instalações climatizada no centro de pesquisa psiquiátrico de Maryland. Foram mantidos em um ciclo claro-escuro de 12/12 h, com luzes hora de zeitgeber (ZT) 0 e luzes apagadas às 12 ZT. Os animais receberam ad libitum acesso à comida e água durante os experimentos. A instalação foi totalmente credenciada pela Associação Americana para a acreditação do laboratório Cuidado Animal.
1. intraperitoneal Quinurenina administração a ratos
Nota: No presente protocolo, Quinurenina foi administrada em ZT 0 (o início da fase de luz) e tecido foi coletado na ZT 2 e 4 ZT para determinar um curso de tempo para o metabolismo da Quinurenina. Soro fisiológico injetado animais foram utilizados como um controle. Por exemplo, se um rato pesa 500 g e a dose desejada é de 100 mg/kg, o rato deve receber uma injeção de 5 mL de uma solução de 10 mg/mL de Quinurenina.
2. cromatografia líquida de alto desempenho Quinurenina medições usando
3. paradigma de evasão passiva
Nota: Estes experimentos comportamentais foram projetados com base em nossos achados bioquímicos com o desafio de Quinurenina aguda. Para maximizar o aumento do cérebro CLAYDSON, Quinurenina (100 mg/kg) foi administrada em ZT 0, 2 h antes da sessão de treinamento no paradigma da vacância passiva para testar a aprendizagem hippocampal mediada, que ocorreu em 2 ZT. O aparelho consiste em 2 tamanhos igualmente compartimentos (21,3 cm de altura, 20,3 cm de largura e 15,9 cm de profundidade) separada por uma porta de guilhotina e contido dentro de uma caixa à prova de som. Os dois compartimentos do aparato de teste são denominados "lado bom" e o "lado negro". As paredes do lado da luz são claras e, durante os ensaios, uma luz acende para iluminar ainda mais este compartimento. As paredes do compartimento escuro são completamente cobertas para manter uma condição opacas.
4. análise de dormir
Para validar o uso de uma injeção intraperitoneal Quinurenina como um método para elevar o cérebro CLAYDSON, foi realizada uma análise HPLC de tecido. Curvas padrão (Figura 1) foram construídas usando o software associado e permitido para a quantificação das amostras de tecido. Cromatogramas representativas para Quinurenina e CLAYDSON são apresentadas na Figura 2. Quinurenina foi observada em um tempo de retenção de 6...
Para uma avaliação fiável da CLAYDSON no cérebro após uma administração Quinurenina periférica, é fundamental para combinar e interpretar experimentos bioquímicos e funcionais. Aqui, apresentamos um protocolo detalhado que permite que novos usuários para estabelecer métodos eficazes para medir o plasma Quinurenina e cérebro CLAYDSON de ratos. A medição da Quinurenina no plasma confirmou a injeção exata e a medição de um metabólito CLAYDSON confirma a síntese de novo no cérebro. Existem vár...
Os autores não têm nada para divulgar.
O presente estudo foi financiado em parte pelo National Institutes of Health (R01 NS102209) e uma doação do Clare E. Forbes Trust.
Name | Company | Catalog Number | Comments |
Wistar rats | Charles River Laboratories | adult male, 250-350 g | |
L-kynurenine sulfate | Sai Advantium | ||
ReproSil-Pur C18 column (4 mm x 150 mm) | Dr. Maisch GmbH | ||
EZ Clips | Stoelting Co. | 59022 | |
Mounting materials screws | PlasticsOne | 00-96 X 1/16 | |
Nonabsorbable Sutures | MedRep Express | 699B | CP Medical Monomid Black Nylon Sutures, 4-0, P-3, 18", BOX of 12 |
Absorbable Sutures | Ethicon | J310H | 4-0 Coated Vicryl Violet 1X27'' SH-1 |
Dental Cement | Stoelting Co. | 51458 | |
Drill Bit | Stoelting Co. | 514551 | 0.45 mm |
Name | Company | Catalog Number | Comments |
Alliance HPLC system | |||
E2695 separation module | Waters | 176269503 | |
2475 fluorescence detector | Waters | 186247500 | |
post-column reagent manager | Waters | 725000556 | |
Lenovo computer | Waters | 668000249 | |
Empower software | Waters | 176706100 | |
Name | Company | Catalog Number | Comments |
Passive avoidance box for rat | |||
Extra tall MDF sound attenuating cubicle | MedAssociates | ENV-018MD | Interior: 22" (W) x 22" (H) x 16" (D) |
Center channel modulator shuttle box chamber | MedAssociates | ENV-010MC | |
Stainless steel grid floor for rat | MedAssociates | ENV-010MB-GF | |
Auto guillotine door | MedAssociates | ENV-010B-S | |
Quick disconnect shuttle grid floor harness for rat | MedAssociates | ENV-010MB-QD | |
Stimulus light, 1" white lens, mounted on modular panel | MedAssociates | ENV-221M | |
Sonalert module with volume control for rat chamber | MedAssociates | ENV-223AM | |
SmartCtrl 8 input/16 output package | MedAssociates | DIG-716P2 | |
8 Channel IR control for shuttle boxes | MedAssociates | ENV-253C | |
Infrared source and dectector array strips | MedAssociates | ENV-256 | |
Tabletop interface cabinet, 120 V 60 Hz | MedAssociates | SG-6080C | |
Dual range constant current aversive stimulation module | MedAssociates | ENV-410B | |
Solid state grid floor scrambler module | MedAssociates | ENV-412 | |
Dual A/B shock control module | MedAssociates | ENV-415 | |
2' 3-Pin mini-molex extension | MedAssociates | SG-216A-2 | |
10' Shock output cable, DB-9 M/F | MedAssociates | SG-219G-10 | |
Shuttle shock control cable 15', 6 | MedAssociates | SG-219SA | |
Small tabletop cabinet and power supply, 120 V 60 Hz | MedAssociates | SG-6080D | |
PCI interface package | MedAssociates | DIG-700P2-R2 | |
Shuttle box avoidance utility package | MedAssociates | SOF-700RA-7 | |
Name | Company | Catalog Number | Comments |
Sleep-Wake Monitoring Equipment | |||
Ponehmah software | Data Sciences International (DSI) | PNP-P3P-610 | |
MX2 8 Source Acquisition interface | Data Sciences International (DSI) | PNM-P3P-MX204 | |
Dell computer, Optiplex 7020, Windows 7, 64 bit | Data Sciences International (DSI) | 271-0112-013 | |
Dell 19" computer monitor | Data Sciences International (DSI) | 271-0113-001 | |
Receivers for plastic cages, 8x | Data Sciences International (DSI) | 272-6001-001 | |
Cisco RV130 VPN router | Data Sciences International (DSI) | RV130 | |
Matrix 2.0 | Data Sciences International (DSI) | 271-0119-001 | |
Network switch | Data Sciences International (DSI) | SG200-08P | |
Neuroscore software | Data Sciences International (DSI) | 271-0171-CFG | |
Two biopotential channels transmitter, model TL11M2-F40-EET | Data Sciences International (DSI) | 270-0134-001 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados