JoVE Logo

Sign In

Abstract

Developmental Biology

Human Ovarian Surface Epithelium Organoids as a Platform to Study Tissue Regeneration

Published: August 16th, 2024

DOI:

10.3791/66797

1Department of Anatomy and Embryology, Leiden University Medical Center, 2The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 3Department of Obstetrics and Gynaecology, Amsterdam University Medical Center, 4Centre of Expertise on Gender Dysphoria, Amsterdam UMC, 5Amsterdam Reproduction and Development Research Institute, 6Department of Gynaecology, Leiden University Medical Center, 7Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital

* These authors contributed equally

Abstract

The ovarian surface epithelium (OSE), the outermost layer of the ovary, undergoes rupture during each ovulation and plays a crucial role in ovarian wound healing while restoring ovarian integrity. Additionally, the OSE may serve as the source of epithelial ovarian cancers. Although the OSE regenerative properties have been well studied in mice, understanding the precise mechanism of tissue repair in the human ovary remains hampered by limited access to human ovaries and suitable in vitro culture protocols. Tissue-specific organoids, miniaturized in vitro models replicating both structural and functional aspects of the original organ, offer new opportunities for studying organ physiology, disease modeling, and drug testing.

Here, we describe a method to isolate primary human OSE (hOSE) from whole ovaries and establish hOSE organoids. We include a morphological and cellular characterization showing heterogeneity between donors. Additionally, we demonstrate the capacity of this culture method to evaluate hormonal effects on OSE-organoid growth over a 2-week period. This method may enable the discovery of factors contributing to OSE regeneration and facilitate patient-specific drug screenings for malignant OSE.

Explore More Videos

Human Ovarian Surface Epithelium

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved