Temple University

5 ARTICLES PUBLISHED IN JoVE

image

Medicine

Cecal Ligation Puncture Procedure
Miguel G. Toscano 1, Doina Ganea 1, Ana M. Gamero 2
1Department of Microbiology and Immunology School of Medicine, Temple University , 2Department of Biochemistry, School of Medicine, Temple University

The mouse model of cecal ligation and puncture as a valuable tool for the study of human sepsis.

image

Biology

Visualization of Vascular Ca2+ Signaling Triggered by Paracrine Derived ROS
Karthik Mallilankaraman 1, Rajesh Kumar Gandhirajan 1, Brian J. Hawkins 2, Muniswamy Madesh 1
1Department of Biochemistry, Temple University , 2Department of Anesthesiology and Pain Medicine, University of Washington

An efficient method to gain insights into visualizing the paracrine-derived ROS induction of endothelial Ca2+ signaling is described. This method takes advantage of measuring paracrine derived ROS triggered Ca2+ mobilization in vascular endothelial cells in a co-culture model.

image

Neuroscience

Reproducible Mouse Sciatic Nerve Crush and Subsequent Assessment of Regeneration by Whole Mount Muscle Analysis
Andrew R. Bauder 1, Toby A. Ferguson 1
1Center for Neural Repair and Rehabilitation, Temple University

In this report we describe a method to crush mouse sciatic nerve. This method uses readily available hemostatic forceps and easily and reproducibly produces complete sciatic nerve crush. In addition, we describe a method to prepare muscle whole mounts suitable for analysis of nerve regeneration after sciatic nerve crush.

image

Biology

Solid Phase Synthesis of a Functionalized Bis-Peptide Using "Safety Catch" Methodology
Conrad T. Pfeiffer 1, Christian E. Schafmeister 1
1College of Science and Technology, Temple University

The efficient solid-phase peptide synthesis of a functionalized bis-peptide trimer utilizing a "safety catch" cleavage procedure from HMBA resin is described.

image

Biology

Gene Trapping Using Gal4 in Zebrafish
Jorune Balciuniene 1, Darius Balciunas 1
1Department of Biology, Temple University

This protocol describes the method of gene trap insertional mutagenesis using Gal4-VP16 as the primary reporter and GFP/RFP as secondary reporters in zebrafish. Approximately one in ten high-expressing F0 fish yield gene trap progeny co-expressing GFP and RFP. The screening procedure can be readily scaled to adapt to the size of the laboratory performing the insertional mutagenesis screen.

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены