Войдите в систему

Одним из распространенных повреждений ДНК является химическое изменение отдельных оснований путем алкилирования, окисления или дезаминирования. Измененные основания вызывают неправильное спаривание и разрыв цепи во время репликации. Этот тип повреждения вызывает минимальные изменения в структуре двойной спирали ДНК и может быть репарирован путями эксцизионной репарации оснований (BER). BER корректирует поврежденные последовательности ДНК, удаляя поврежденное основание и восстанавливая исходную последовательность оснований, используя комплементарную цепь в качестве матрицы.

Первым шагом BER является распознавание повреждения ДНК, которое осуществляется ДНК-гликозилазами. В зависимости от типа основания, специфическая гликозилаза разрывает N-гликозидную связь между нуклеотидным основание и рибозой, оставляя фосфатный остов ДНК нетронутым, но создавая апуриновый или апиримидиновый (AП) сайт. Бифункциональные гликозилазы разрезают фосфодиэфирную цепь, в результате чего образуется 5’ или 3’ фосфат. Монофункциональные гликозилазы не обладают этим свойством и должны зависеть от АП-эндонуклеазы для расщепления связи между сахаром и фосфатом, 5’ от АП-сайта, образуя 3’-OH и 5’-дезоксирибофосфат. Основываясь на соответствующем уотсон-криковском спаривании ДНК-полимераза вставляет правильное основание и использует активность АП-лиазы, связанной с ней, для удаления фосфата дезоксирибозы. Ник в остове сшивается ДНК-лигазой. Как ДНК-лигаза III, так и ДНК-полимераза используют белок XRCC1 в качестве каркаса для связывания участка репарации.

Мутации в белках путей BER могут приводить к различным типам рака. Например, мутация гликозилазы человека OGG1 связана с повышенным риском развития рака легких и поджелудочной железы.

Теги
DNA RepairDamaged DNABase Excision RepairDNA GlycosylasesWeak Base PairsModified BasesDNA HelixDNA PolymeraseDNA LigaseExcision MechanismEnvironmental ToxinsDeaminationOxidationAlkylation

Из главы 7:

article

Now Playing

7.2 : Эксцизионная репарация основания

Репарация и рекомбинация ДНК

21.3K Просмотры

article

7.1 : Репарация ДНК - Обзор

Репарация и рекомбинация ДНК

26.9K Просмотры

article

7.3 : Эксцизионная репарация основания длинным фрагментом

Репарация и рекомбинация ДНК

6.9K Просмотры

article

7.4 : Эксцизионная репарация нуклеотидов

Репарация и рекомбинация ДНК

11.0K Просмотры

article

7.5 : Транслезионные ДНК-полимеразы

Репарация и рекомбинация ДНК

9.6K Просмотры

article

7.6 : Исправление двухниточных разрывов

Репарация и рекомбинация ДНК

11.7K Просмотры

article

7.7 : Повреждение ДНК может остановить клеточный цикл

Репарация и рекомбинация ДНК

8.9K Просмотры

article

7.8 : Гомологичная рекомбинация

Репарация и рекомбинация ДНК

49.5K Просмотры

article

7.9 : Перезапуск заблокированных вилок репликации

Репарация и рекомбинация ДНК

5.7K Просмотры

article

7.10 : Преобразование гена

Репарация и рекомбинация ДНК

9.5K Просмотры

article

7.11 : Обзор транспозиции и рекомбинации

Репарация и рекомбинация ДНК

14.8K Просмотры

article

7.12 : ДНК-Транспозоны

Репарация и рекомбинация ДНК

14.1K Просмотры

article

7.13 : Ретровирусы

Репарация и рекомбинация ДНК

11.7K Просмотры

article

7.14 : LTR Ретротранспозоны

Репарация и рекомбинация ДНК

17.1K Просмотры

article

7.15 : Ретротранспозоны без LTR

Репарация и рекомбинация ДНК

11.2K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены