Войдите в систему

Density is an important characteristic of substances, crucial in determining whether an object sinks or floats in a fluid. Its SI unit is kg/m3, and its cgs unit is g/cm3. The density of an object helps in identifying its composition, and also reveals information about the phase of the matter and its substructure. The densities of liquids and solids are roughly comparable, consistent with the fact that their atoms are in close contact. However, gases have much lower densities than liquids and solids because their atoms are separated by large amounts of empty space.

The density of a substance is not necessarily constant throughout its volume. If the density is constant throughout a substance, it is said to be a homogeneous substance. An example of a homogeneous substance is a solid iron bar, whose density is constant throughout, and so the density of any sample of the iron bar is the same as its average density. If the density of a substance is not constant, it is said to be a heterogeneous substance. A chunk of Swiss cheese is an example of a heterogeneous material, containing both solid cheese and gas-filled voids. The density at a specific location within a heterogeneous material is called the local density and is given as a function of location. Since gases are free to expand and contract, their densities vary considerably with temperature, whereas the densities of liquids vary little with temperature. Therefore, the densities of liquids are often treated as constant, with the density equal to the average density.

Density is a dimensional property; therefore, when comparing the densities of two substances, the units must be taken into consideration. For this reason, a more convenient, dimensionless quantity called the specific gravity is often used to compare densities. Specific gravity is defined as the ratio of the density of a material to the density of water at 4.0 °C and one atmosphere of pressure, which is 1000 kg/m3. The comparison uses water because the density of water is 1 g/cm3, which was originally used to define the kilogram. Specific gravity, being dimensionless, provides a ready comparison among materials without having to worry about the unit of density.

This text is adapted from Openstax, University Physics Volume 1, Section 14.1: Fluids, Density, and Pressure.

Теги
DensitySI UnitKg m3Cgs UnitG cm3Homogeneous SubstanceHeterogeneous SubstanceLocal DensitySpecific GravityAverage DensityFluid CharacteristicsPhase Of MatterMaterial CompositionDimensional Property

Из главы 13:

article

Now Playing

13.2 : Density

Fluid Mechanics

11.4K Просмотры

article

13.1 : Характеристики жидкостей

Fluid Mechanics

3.4K Просмотры

article

13.3 : Давление жидкостей

Fluid Mechanics

11.8K Просмотры

article

13.4 : Изменение атмосферного давления

Fluid Mechanics

1.8K Просмотры

article

13.5 : Закон Паскаля

Fluid Mechanics

7.6K Просмотры

article

13.6 : Применение закона Паскаля

Fluid Mechanics

7.6K Просмотры

article

13.7 : Манометры

Fluid Mechanics

2.7K Просмотры

article

13.8 : Плавучесть

Fluid Mechanics

5.7K Просмотры

article

13.9 : Принцип Архимеда

Fluid Mechanics

7.4K Просмотры

article

13.10 : Плотность и принцип Архимеда

Fluid Mechanics

6.4K Просмотры

article

13.11 : Ускоряющие жидкости

Fluid Mechanics

944 Просмотры

article

13.12 : Поверхностное натяжение и поверхностная энергия

Fluid Mechanics

1.2K Просмотры

article

13.13 : Избыточное давление внутри капли и пузыря

Fluid Mechanics

1.5K Просмотры

article

13.14 : Угол контакта

Fluid Mechanics

11.3K Просмотры

article

13.15 : Подъем жидкости в капиллярной трубке

Fluid Mechanics

1.1K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены