로그인

Density is an important characteristic of substances, crucial in determining whether an object sinks or floats in a fluid. Its SI unit is kg/m3, and its cgs unit is g/cm3. The density of an object helps in identifying its composition, and also reveals information about the phase of the matter and its substructure. The densities of liquids and solids are roughly comparable, consistent with the fact that their atoms are in close contact. However, gases have much lower densities than liquids and solids because their atoms are separated by large amounts of empty space.

The density of a substance is not necessarily constant throughout its volume. If the density is constant throughout a substance, it is said to be a homogeneous substance. An example of a homogeneous substance is a solid iron bar, whose density is constant throughout, and so the density of any sample of the iron bar is the same as its average density. If the density of a substance is not constant, it is said to be a heterogeneous substance. A chunk of Swiss cheese is an example of a heterogeneous material, containing both solid cheese and gas-filled voids. The density at a specific location within a heterogeneous material is called the local density and is given as a function of location. Since gases are free to expand and contract, their densities vary considerably with temperature, whereas the densities of liquids vary little with temperature. Therefore, the densities of liquids are often treated as constant, with the density equal to the average density.

Density is a dimensional property; therefore, when comparing the densities of two substances, the units must be taken into consideration. For this reason, a more convenient, dimensionless quantity called the specific gravity is often used to compare densities. Specific gravity is defined as the ratio of the density of a material to the density of water at 4.0 °C and one atmosphere of pressure, which is 1000 kg/m3. The comparison uses water because the density of water is 1 g/cm3, which was originally used to define the kilogram. Specific gravity, being dimensionless, provides a ready comparison among materials without having to worry about the unit of density.

This text is adapted from Openstax, University Physics Volume 1, Section 14.1: Fluids, Density, and Pressure.

Tags
DensitySI UnitKg m3Cgs UnitG cm3Homogeneous SubstanceHeterogeneous SubstanceLocal DensitySpecific GravityAverage DensityFluid CharacteristicsPhase Of MatterMaterial CompositionDimensional Property

장에서 13:

article

Now Playing

13.2 : Density

Fluid Mechanics

11.4K Views

article

13.1 : 유체의 특성

Fluid Mechanics

3.4K Views

article

13.3 : 유체의 압력

Fluid Mechanics

11.8K Views

article

13.4 : 대기압의 변화

Fluid Mechanics

1.8K Views

article

13.5 : 파스칼의 법칙

Fluid Mechanics

7.6K Views

article

13.6 : 파스칼의 법칙의 적용

Fluid Mechanics

7.6K Views

article

13.7 : 압력 게이지

Fluid Mechanics

2.7K Views

article

13.8 : 부 력

Fluid Mechanics

5.7K Views

article

13.9 : 아르키메데스의 원리

Fluid Mechanics

7.4K Views

article

13.10 : 밀도와 아르키메데스의 원리

Fluid Mechanics

6.4K Views

article

13.11 : 가속 유체

Fluid Mechanics

944 Views

article

13.12 : 표면 장력 및 표면 에너지

Fluid Mechanics

1.2K Views

article

13.13 : 방울과 기포 내부의 과도한 압력

Fluid Mechanics

1.5K Views

article

13.14 : 접촉각

Fluid Mechanics

11.3K Views

article

13.15 : 모세관 안에서 액체의 상승

Fluid Mechanics

1.1K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유