The Wilcoxon signed-rank test for the median of a single population is a nonparametric test used to evaluate whether the median of a population differs from a specified value. Unlike parametric tests, it does not require data to follow a normal distribution, making it suitable for non-normal or small samples. The test begins by calculating the difference (d) between each observation and the hypothesized median. The absolute values of these differences are ranked in ascending order, with ties averaged. Each rank is then assigned the original sign of the corresponding d-value, creating a set of signed ranks.

The next step is to separately sum the positive and negative signed ranks. The test statistic is based on the smaller of these two sums (absolute value), which reflects the degree of symmetry around the hypothesized median. The sample size (n) is the number of non-zero d-values (differences that are not exactly zero). Based on n and the distribution of signed ranks, the test statistic is evaluated against critical values for a given significance level to determine whether to reject the null hypothesis that the sample median equals the hypothesized value. The Wilcoxon signed-rank test is particularly useful for data that deviates from normality, as it accounts for both the magnitude and direction of differences, unlike the simpler sign test, which only considers direction

  1. If n is smaller than 30, the test statistic T is taken as the smallest of the two sums obtained;
  2. If n is higher than 30, the test statistic T is calculated using the formula

Equation 1

In both cases, the critical Z-value is obtained from its table for a particular significance level and sample size n. The null hypothesis is rejected if the test statistic, T, is lower than the critical value.

Из главы 13:

article

Now Playing

13.8 : Wilcoxon Signed-Ranks Test for Median of Single Population

Nonparametric Statistics

33 Просмотры

article

13.1 : Введение в непараметрическую статистику

Nonparametric Statistics

478 Просмотры

article

13.2 : Ряды

Nonparametric Statistics

169 Просмотры

article

13.3 : Введение в тест на знаки

Nonparametric Statistics

480 Просмотры

article

13.4 : Тест на знак для совпадающих пар

Nonparametric Statistics

30 Просмотры

article

13.5 : Тест на знак для номинальных данных

Nonparametric Statistics

22 Просмотры

article

13.6 : Знаковый критерий для медианы одиночной популяции

Nonparametric Statistics

22 Просмотры

article

13.7 : Тест Уилкоксона на подписанные ранги для подобранных пар

Nonparametric Statistics

25 Просмотры

article

13.9 : Критерий ранговой суммы Вилкоксона

Nonparametric Statistics

49 Просмотры

article

13.10 : Начальной загрузки

Nonparametric Statistics

437 Просмотры

article

13.11 : Тест Андерсона-Дарлинга

Nonparametric Statistics

459 Просмотры

article

13.12 : Тест ранговой корреляции Спирмена

Nonparametric Statistics

488 Просмотры

article

13.13 : Тау-тест Кендалла

Nonparametric Statistics

426 Просмотры

article

13.14 : Тест Краскела-Уоллиса

Nonparametric Statistics

407 Просмотры

article

13.15 : Вальд-Вулфовиц проводит тест I

Nonparametric Statistics

466 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены