JoVE Logo

Войдите в систему

6.6 : Mass Spectrum: Interpretation

An unknown compound can be established by identifying the molecular ion peak in the mass spectrum. The molecular ion peak is often weak or absent due to the predominance of fragmentation in high-energy electron beams. In such cases, a low-energy electron beam can be used to scan the spectrum to enhance the intensity of the molecular ion peak. Additionally, chemical ionization, field ionization, and desorption ionization spectra are used to obtain a relatively intense molecular ion peak.

To determine the empirical formula from the molecular ion mass, a high-resolution mass spectrometer like a double-focusing mass spectrometer, a time-of-flight mass spectrometer, an orbitrap mass spectrometer, or a Fourier transform ion cyclotron resonance mass spectrometer is required.

Comparing the intensities of isotope peaks (M+1 and M+2), which arise from the natural abundances of higher-mass isotopes, with the molecular ion peak (M+) gives a fair idea of the empirical formula of an unknown compound.

The number of carbon atoms present in the unknown compound can be deduced by comparing the M+1 to M+ peak intensity ratio to the expected M+1 contribution per carbon atom.

The nitrogen rule, stating that a molecule having an even molecular weight contains zero or even number of nitrogen atoms, predicts the number of nitrogen atoms present in the unknown compound.

Further, the degree of unsaturation predicted from the formula

Figure1

indicates the presence of multiple bonds or rings in the unknown compound. Lastly, the study of fragmentation patterns for compounds based on a series of guidelines helps identify signature fragments at characteristic m/z values, suggesting the presence of certain structural features.

Теги

Mass SpectrumMolecular Ion PeakFragmentationLow energy Electron BeamChemical IonizationHigh resolution Mass SpectrometerEmpirical FormulaIsotope PeaksCarbon AtomsNitrogen RuleDegree Of UnsaturationFragmentation PatternsM z Values

Из главы 6:

article

Now Playing

6.6 : Mass Spectrum: Interpretation

Principles of Mass Spectrometry

1.1K Просмотры

article

6.1 : Mass Spectrometry: Overview

Principles of Mass Spectrometry

3.8K Просмотры

article

6.2 : Mass Spectrometry: Isotope Effect

Principles of Mass Spectrometry

1.8K Просмотры

article

6.3 : Mass Spectrometry: Molecular Fragmentation Overview

Principles of Mass Spectrometry

2.8K Просмотры

article

6.4 : Mass Spectrometers

Principles of Mass Spectrometry

4.9K Просмотры

article

6.5 : Mass Spectrum

Principles of Mass Spectrometry

1.7K Просмотры

article

6.7 : Mass Analyzers: Overview

Principles of Mass Spectrometry

541 Просмотры

article

6.8 : Mass Analyzers: Common Types

Principles of Mass Spectrometry

529 Просмотры

article

6.9 : High-Resolution Mass Spectrometry (HRMS)

Principles of Mass Spectrometry

1.2K Просмотры

article

6.10 : Mass Spectrometry: Complex Analysis

Principles of Mass Spectrometry

666 Просмотры

article

6.11 : Tandem Mass Spectrometry

Principles of Mass Spectrometry

807 Просмотры

article

6.12 : Gas Chromatography–Mass Spectrometry (GC–MS)

Principles of Mass Spectrometry

3.7K Просмотры

article

6.13 : Inductively Coupled Plasma–Mass Spectrometry (ICP–MS): Overview

Principles of Mass Spectrometry

594 Просмотры

article

6.14 : Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): Interferences

Principles of Mass Spectrometry

344 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены