Mechanistic models are utilized in individual analysis using single-source data, but imperfections arise due to data collection errors, preventing perfect prediction of observed data. The mathematical equation involves known values (Xi), observed concentrations (Ci), measurement errors (εi), model parameters (ϕj), and the related function (ƒi) for i number of values. Different least-squares metrics quantify differences between predicted and observed values. The ordinary least squares (OLS) method favors better predictions for larger observations. In contrast, weighted least squares (WLS) and maximum likelihood/expected least squares (ML/ELS) methods improve OLS by incorporating a weighting factor.
Population analysis models predict concentration data for multiple individuals, accounting for interindividual variability and providing individual and population predictions. The same structural model fits all individuals' data for a specific drug under study. Different types of population compartmental analysis include naïve-average data, naïve pooled data, and the two-stage approach, which includes standard, global, and iterative types. In the two-stage approach, population parameter estimates are obtained through iterative processes, such as standard two-stage (STS) and global two-stage (GTS).
Из главы 7:
Now Playing
Pharmacokinetic Models
23 Просмотры
Pharmacokinetic Models
80 Просмотры
Pharmacokinetic Models
70 Просмотры
Pharmacokinetic Models
144 Просмотры
Pharmacokinetic Models
165 Просмотры
Pharmacokinetic Models
54 Просмотры
Pharmacokinetic Models
140 Просмотры
Pharmacokinetic Models
50 Просмотры
Pharmacokinetic Models
186 Просмотры
Pharmacokinetic Models
327 Просмотры
Pharmacokinetic Models
119 Просмотры
Pharmacokinetic Models
79 Просмотры
Pharmacokinetic Models
86 Просмотры
Pharmacokinetic Models
351 Просмотры
Pharmacokinetic Models
186 Просмотры
See More
Авторские права © 2025 MyJoVE Corporation. Все права защищены