Mechanistic models are utilized in individual analysis using single-source data, but imperfections arise due to data collection errors, preventing perfect prediction of observed data. The mathematical equation involves known values (Xi), observed concentrations (Ci), measurement errors (εi), model parameters (ϕj), and the related function (ƒi) for i number of values. Different least-squares metrics quantify differences between predicted and observed values. The ordinary least squares (OLS) method favors better predictions for larger observations. In contrast, weighted least squares (WLS) and maximum likelihood/expected least squares (ML/ELS) methods improve OLS by incorporating a weighting factor.
Population analysis models predict concentration data for multiple individuals, accounting for interindividual variability and providing individual and population predictions. The same structural model fits all individuals' data for a specific drug under study. Different types of population compartmental analysis include naïve-average data, naïve pooled data, and the two-stage approach, which includes standard, global, and iterative types. In the two-stage approach, population parameter estimates are obtained through iterative processes, such as standard two-stage (STS) and global two-stage (GTS).
From Chapter 7:
Now Playing
Pharmacokinetic Models
9 Views
Pharmacokinetic Models
36 Views
Pharmacokinetic Models
37 Views
Pharmacokinetic Models
55 Views
Pharmacokinetic Models
38 Views
Pharmacokinetic Models
21 Views
Pharmacokinetic Models
79 Views
Pharmacokinetic Models
22 Views
Pharmacokinetic Models
92 Views
Pharmacokinetic Models
110 Views
Pharmacokinetic Models
37 Views
Pharmacokinetic Models
33 Views
Pharmacokinetic Models
49 Views
Pharmacokinetic Models
85 Views
Pharmacokinetic Models
93 Views
See More
Copyright © 2025 MyJoVE Corporation. All rights reserved