The Michaelis constant (KM) and the theoretical maximum process rate (Vmax) are vital parameters in the Michaelis-Menten equation, central to many biochemical reactions. They provide essential insights into enzyme kinetics and drug metabolism.

These parameters can be estimated by analyzing plasma concentration data post-drug administration. A notable example of this application is phenytoin, a drug with capacity-limited kinetics. It's recommended that phenytoin should be administered at two different dose regimens until a steady-state concentration (Css) is reached.

A direct linear plot method determines the KM and Vmax in phenytoin-administered patients. This involves plotting two steady-state concentrations (Css) and their corresponding dosing rates (DR). The lines formed by joining these points are then extrapolated to obtain the values for KM and Vmax.

Several other methods can also be employed to estimate these parameters. One such method is the Lineweaver Burk plot, which plots the reciprocal of the dosing rate versus the steady-state concentration. In this plot, the slope of the line is equal to KM/Vmax, and the y-intercept is 1/Vmax. This means that both parameters can be readily estimated from this plot.

Another method involves plotting the dosing rate (DR) against the ratio of the dosing rate to the steady-state concentration (DR/Css). This method, typically referred to as the Eadie-Hofstee plot, allows for determining both KM and Vmax. The slope of the line obtained from this plot is -KM, while the y-intercept is Vmax.

It's important to note that in clinical settings, the value of KM can vary among patients. Typically, patients with lower KM values tend to experience larger shifts in plasma concentrations during dosage adjustments. They also exhibit a more significant change in the rate of drug elimination compared to those with higher KM values. This variability in KM values underscores the importance of personalized medicine and dosage adjustments.

Из главы 8:

article

Now Playing

8.4 : Determination of Michaelis Constant and Maximum Elimination Rate

Nonlinear Pharmacokinetics

14 Просмотры

article

8.1 : Нелинейная фармакокинетика: обзор

Nonlinear Pharmacokinetics

83 Просмотры

article

8.2 : Нелинейная фармакокинетика: причины нелинейности

Nonlinear Pharmacokinetics

26 Просмотры

article

8.3 : Нелинейная фармакокинетика: уравнение Михаэлиса-Ментена

Nonlinear Pharmacokinetics

35 Просмотры

article

8.5 : Нелинейная фармакокинетика: элиминация препарата при внутривенном болюсном введении

Nonlinear Pharmacokinetics

7 Просмотры

article

8.6 : Распределение лекарственных средств как однокомпонентная модель и элиминация с помощью нелинейной фармакокинетики: обзор

Nonlinear Pharmacokinetics

9 Просмотры

article

8.7 : Параметры, влияющие на нелинейное исключение: вход нулевого порядка, поглощение первого порядка и двухкамерная модель

Nonlinear Pharmacokinetics

8 Просмотры

article

8.8 : Нелинейная фармакокинетика: зависимость периода полувыведения и клиренса дозы

Nonlinear Pharmacokinetics

12 Просмотры

article

8.9 : Хронофармакокинетика: циркадные ритмы и влияние на лекарственный ответ

Nonlinear Pharmacokinetics

23 Просмотры

article

8.10 : Хронофармакокинетика: временная фармакокинетика

Nonlinear Pharmacokinetics

28 Просмотры

article

8.11 : Нелинейная фармакокинетика: биодоступность и связывание белок-лекарств

Nonlinear Pharmacokinetics

43 Просмотры

article

8.12 : Нелинейная фармакокинетика: роль транспортеров

Nonlinear Pharmacokinetics

9 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены