The Michaelis constant (KM) and the theoretical maximum process rate (Vmax) are vital parameters in the Michaelis-Menten equation, central to many biochemical reactions. They provide essential insights into enzyme kinetics and drug metabolism.

These parameters can be estimated by analyzing plasma concentration data post-drug administration. A notable example of this application is phenytoin, a drug with capacity-limited kinetics. It's recommended that phenytoin should be administered at two different dose regimens until a steady-state concentration (Css) is reached.

A direct linear plot method determines the KM and Vmax in phenytoin-administered patients. This involves plotting two steady-state concentrations (Css) and their corresponding dosing rates (DR). The lines formed by joining these points are then extrapolated to obtain the values for KM and Vmax.

Several other methods can also be employed to estimate these parameters. One such method is the Lineweaver Burk plot, which plots the reciprocal of the dosing rate versus the steady-state concentration. In this plot, the slope of the line is equal to KM/Vmax, and the y-intercept is 1/Vmax. This means that both parameters can be readily estimated from this plot.

Another method involves plotting the dosing rate (DR) against the ratio of the dosing rate to the steady-state concentration (DR/Css). This method, typically referred to as the Eadie-Hofstee plot, allows for determining both KM and Vmax. The slope of the line obtained from this plot is -KM, while the y-intercept is Vmax.

It's important to note that in clinical settings, the value of KM can vary among patients. Typically, patients with lower KM values tend to experience larger shifts in plasma concentrations during dosage adjustments. They also exhibit a more significant change in the rate of drug elimination compared to those with higher KM values. This variability in KM values underscores the importance of personalized medicine and dosage adjustments.

Aus Kapitel 8:

article

Now Playing

8.4 : Determination of Michaelis Constant and Maximum Elimination Rate

Nonlinear Pharmacokinetics

13 Ansichten

article

8.1 : Nichtlineare Pharmakokinetik: Überblick

Nonlinear Pharmacokinetics

69 Ansichten

article

8.2 : Nichtlineare Pharmakokinetik: Ursachen der Nichtlinearität

Nonlinear Pharmacokinetics

21 Ansichten

article

8.3 : Nichtlineare Pharmakokinetik: Michaelis-Menten-Gleichung

Nonlinear Pharmacokinetics

25 Ansichten

article

8.5 : Nichtlineare Pharmakokinetik: Eliminierung von Medikamenten bei der intravenösen Bolusinjektion

Nonlinear Pharmacokinetics

7 Ansichten

article

8.6 : Wirkstoffverteilung als Ein-Kompartiment-Modell und Eliminierung durch nichtlineare Pharmakokinetik: Überblick

Nonlinear Pharmacokinetics

9 Ansichten

article

8.7 : Parameter, die die nichtlineare Eliminierung beeinflussen: Eingabe nullter Ordnung, Absorption erster Ordnung und Zwei-Kompartiment-Modell

Nonlinear Pharmacokinetics

8 Ansichten

article

8.8 : Nichtlineare Pharmakokinetik: Abhängigkeit von Eliminationshalbwertszeit und Dosis-Clearance

Nonlinear Pharmacokinetics

10 Ansichten

article

8.9 : Chronopharmakokinetik: Zirkadiane Rhythmen und Einfluss auf das Ansprechen auf Medikamente

Nonlinear Pharmacokinetics

22 Ansichten

article

8.10 : Chronopharmakokinetik: Zeitabhängige Pharmakokinetik

Nonlinear Pharmacokinetics

26 Ansichten

article

8.11 : Nichtlineare Pharmakokinetik: Bioverfügbarkeit und Protein-Wirkstoff-Bindung

Nonlinear Pharmacokinetics

35 Ansichten

article

8.12 : Nichtlineare Pharmakokinetik: Rolle von Transportern

Nonlinear Pharmacokinetics

8 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten