Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
This video demonstrates the method for inducing the modulation of neural activity in cultured human iPSC-derived neurons in a multi-well microelectrode array, or MEA system using a focused ultrasound transducer.
1. Preparation of materials
2. Connection and setup of the peripherals
3. Stimulation and neuronal signal acquisition
Table 1: Focused ultrasound (FUS) parameters set on the TPO
Parameter | Value |
Max Power/Ch | 1.200 W |
Pactual | 0.749 W/channel |
ISPPA | 10.79 W/cm2 |
ISPTA | 0.05 W/cm2 |
Burst Length | 0.100 ms |
Frequency | 250.00 kHz |
Focus | 39.800 mm |
Period | 20.000 ms |
Timer | 60.000 s |
Access restricted. Please log in or start a trial to view this content.
Figure 1: FUS neuromodulation with a multi-well microelectrode array (MEA). (A) Schematic of the setup for FUS neuromodulation with a multi-well MEA. The acoustic waves generated by the FUS transducer propagate through an FUS cone filled with degassed water and are coupled using ultrasound gel. The parafilm is secured to the well using a rubber band to prevent contamination. The MEA plate sends electrical recordings from the neurons to the MEA system. (B) A photograph of the FUS transducer on the multi-well plate contained in the MEA system.
Figure 2: In vitro platform setup. (A) The front of the in vitro platform setup. The transducer power output (TPO; left) is used to program the FUS parameters. The MEA system (right) records electrical activity from the neurons in the well plate, which are neuromodulated by the FUS transducer. (B) The back of the in vitro platform is set up with connections from the matching network (1) to the TPO and (2) to the transducer. (3) The connection from the MEA system to the TPO synchronizes the data acquisition. (4) The connection from the MEA system to the computer for data transfer. (5) The power connection to the MEA system. (6) The power connection to the FUS system. (7) The sonication button.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
MEA System | Axion Biosystem Inc. | Maestro Edge | Sampling Rate: 11500 Hz |
MEA Plate | Axion Biosystem Inc. | CytoView MEA | Electrode and Well: 16 electrodes in 24 wells |
Well plate Interface | Amcor Inc. | Parafilm PM996; P7793 | Thickness: 127 µm |
CO2 Tank and Regulator for culture | AirGas Inc./ Harris Inc. | 9296NC | Concentration: 5% |
Culture Media | ThermoFisher Inc. | Laminin; 23017-015 | Concentration: 1 µg/mL |
HiPSC Neurons | Peprotech | CIPS and GM01582 Derived; 450-10 | Concentration: 10 ng/mL (Refer Taga et al [2021]13) |
Transducer | Sonic Concepts Inc. | CTX250; 008 | Center Frequency: 250 kHz |
Matching Network | Sonic Concepts Inc. | CTX250; NFS102v2 | Impedance: 50 Ω |
Transducer Power Output (TPO) | Sonic Concepts Inc. | Version 4.1; 020 | Frequency: From 250 kHz to 2.5 MHz |
Membrane | McMaster Inc. | Silicone Rubber; 5542N115 | Thickness: 0.0127 cm |
Coupling Gel | Parker Laboratory Inc. | Aquasonic 100; B08DDWG GXB | Viscosity: 130,000–185,000 cops |
Connection to Probe holder | McMaster Inc. | Steal Threaded Rod; 90322A661 | Length: 1–1/2" Long |
Hydrophone | Sonic Concepts Inc. | Y-104; 009 | Range: 50 kHz–1.9 MHz |
Water Tank | Sonic Concepts Inc. | WT | Size: 30 cm x 30 cm x 30 cm |
Water Conditioning Unit | Sonic Concepts Inc. | WCU; SN006 | Flow Velocity: 50 mL/s maximum |
Oscilloscope | Rohde-Schwarz Inc. | RTC1002 | Sampling rate: Up to 50 MHz |
Stage | Sonic Concepts Inc. | MicroStage; 2 | Accuracy: 1 µm |
Thermochromic sheet | TIPTEMP Inc. | Liquid Crystal Sheet; TLCSEN337 | Range: 22–24 °C |
Computer | Microsoft Surface | Surface Pro | CPU i5 1035G4: 3.7 GHz |
Data Transfer Software | Mathworks Inc. | MATLAB | Version 2021b |
Processing Software | Python Software Foundation | Python | Version 3.7.10 |
Access restricted. Please log in or start a trial to view this content.
This article has been published
Video Coming Soon
Source: Liang, R. et al., Focused Ultrasound Neuromodulation of Human In Vitro Neural Cultures in Multi-Well Microelectrode Arrays. J. Vis. Exp. (2024)
Авторские права © 2025 MyJoVE Corporation. Все права защищены