Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
We present an approach for visualizing fluorescent protein DNA binding peptide (FP-DBP)-stained large DNA molecules tethered on the polyethylene glycol (PEG) and avidin-coated glass surface and stretched with microfluidic shear flows.
Large DNA molecules tethered on the functionalized glass surface have been utilized in polymer physics and biochemistry particularly for investigating interactions between DNA and its binding proteins. Here, we report a method that uses fluorescent microscopy for visualizing large DNA molecules tethered on the surface. First, glass coverslips are biotinylated and passivated by coating with biotinylated polyethylene glycol, which specifically binds biotinylated DNA via avidin protein linkers and significantly reduces undesirable binding from non-specific interactions of proteins or DNA molecules on the surface. Second, the DNA molecules are biotinylated by two different methods depending on their terminals. The blunt ended DNA is tagged with biotinylated dUTP at its 3' hydroxyl terminus, by terminal transferase, while the sticky ended DNA is hybridized with biotinylated complimentary oligonucleotides by DNA ligase. Finally, a microfluidic shear flow makes single DNA molecules stretch to their full contour lengths after being stained with fluorescent protein-DNA binding peptide (FP-DBP).
Визуализация больших молекул ДНК привязанных на стеклянных или бусинки поверхностей была использована для исследования ДНК-белковых взаимодействий, динамика белка на подложке ДНК, 1,2 и физики полимеров. 3,4 Платформа для одной привязи больших молекул ДНК имеет несколько различны преимущества по сравнению с другими методами ДНК иммобилизации. 5 Во- первых, большая молекула ДНК , привязанным на поверхности имеет естественную конформацию случайной катушки без сдвигового потока, который является критически важным для белка ДНК-связывающим признать его сайт связывания. Во-вторых, это очень легко изменить химическую среду вокруг молекулы ДНК для серии ферментативных реакций в проточной камере. В- третьих, микрожидком поток сдвига вызывает молекулы ДНК растяжение до 100% от полной длины контура, который очень трудно достичь с помощью альтернативного удлинения ДНК подходов , таких как поверхности иммобилизации 6 и удержания наноканале. 7 Полностью stretched молекула ДНК также предоставляет позиционную информацию, которая может оказаться полезной для мониторинга ферментативные движения на геномной карте.
Тем не менее, ДНК привязывать подход имеет критический недостаток в том, что интеркалирующего красителя, такие как YOYO-1 обычно вызывает привязные молекулы ДНК, чтобы быть легко нарушена светом возбуждения флуоресценции. Как правило, крупные молекулы ДНК должны быть окрашены с флуоресцентным красителем для визуализации под флуоресцентным микроскопом. Для этой цели, YOYO-1 или другие ТОТО серии красители используются, главным образом, потому что эти красители флуоресцируют только тогда , когда они интеркаляции двухцепочечной ДНК. 8 Тем не менее, хорошо известно , что бис-интеркалирующие краситель вызывает Светоиндуцированное ДНК фото-расщеплению , так как из интеркаляции флуорофоров 9 . Кроме того, флуоресцентно окрашенные молекулы ДНК , привязанные на поверхности являются более хрупкими , так как сдвиговые потоки могут оказывать нарушая силы на свободно движущихся молекул ДНК. Поэтому мы разработали FP-DBP как роман DБелок краситель NA-окрашивание для визуализации больших молекул ДНК на привязи на поверхности. Преимущество использования FP-DBP является то , что он не вызывает фото-расщепление ДНК - молекул , к которым он связывается. 10 Кроме того, FP-ДАД не приводит к увеличению контурной длины ДНК, в то время как бис-интеркалирующие красители увеличивают длину контура примерно на 33%.
Этот метод видео вводит экспериментальный подход для привязывания больших молекул ДНК к ПЭГ-биотин поверхности. На рисунке 1 показаны различные подходы привязывать ДНК с тупыми концами и липкими концами. Таким образом, этот способ окрашивания может быть применен к любому типу молекулы ДНК. 2 изображает схематическое представление сборки проточную камеру , которым можно управлять с помощью шприца насос для генерирования сдвиговых потоков для растягиваться молекулы ДНК, а также для загрузки химических и фермент решения. Рисунок 3 демонстрирует микрофотографии полностью растянутых молекул ДНК привязанных на PEGylatред поверхность 11 и окрашивали FP-DBP.
1. ДНК Биотинилирование
2. функционализированных поверхности дериватизации
Примечание:. Чтобы привязанный конец молекулы ДНК на поверхности стекла, основная группа амина силанизированы на покровное с последующим биотин-ПЭГ - покрытием , как показано на рисунке 1 Этот процесс Пегилирование важен для визуализации ДНК одной молекулы , так как ему может значительно уменьшить случайный шум, создаваемый приложением нежелательных молекул на поверхности.
3. Сборка проточной камерой
4. Пример Загрузка в поток палаты
Примечание: Neutravidin могут быть заменены другими авидин белками, такими как стрептавидин. Все реакции могут быть выполнены при комнатной температуре, если это не упоминается. Возьмем раствор образца в виде желтого наконечника, и установить наконечник с раствором на отверстие акрилового держателя (рисунок 2b).
На рисунке 1 показаны два различных метода ДНК привязывание в зависимости от концевых структур молекулы ДНК. На рисунке 1а показано , как липкие законченные молекулы ДНК гибридизовали с комплементарными биотинилированных олигонуклеотидов, которые ?...
Здесь мы представляем платформу для визуализации длинных молекул ДНК биотинилированного для закрепления на поверхностях. Мы сообщали подход к молекулам ДНК , привязанных на авидин белковой поверхности , покрытой с биотинилированного бычьего сывороточного альбумина. 6 В более р?...
The authors have nothing to disclose.
This work was supported by the Sogang University Research Grant of 201410036.
Name | Company | Catalog Number | Comments |
1. DNA Biotinylation | |||
1.1) Biotinylation of blunt-end DNA using Terminal Transferase (TdT) | |||
Terminal Transferase | New England Biolabs | M0315S | Provided with 10x reaction buffer, 2.5 mM cobalt chloride |
Biotin-11-dUTP | Invitrogen | R0081 | Biotin-ddNTP is also available |
T4GT7 Phage DNA | Nippon Gene | 318-03971 | |
Ethylenediaminetetraacetic acid | Sigma-Aldrich | E6758 | EDTA |
1.2) Biotinylation of sticky end DNA Using DNA Ligase | |||
T4 DNA Ligase | New England Biolabs | M0202S | Provided with 10x reaction buffer |
Lambda Phage DNA | Bioneer | D-2510 | Also available at New England Biolabs |
2. Functionalized Surface Derivatization | |||
2.1) Piranha Cleaning | |||
Coverslip | Marienfeld-Superior | 0101050 | 22 mm x 22 mm, No. 1 Thickness |
Teflon rack | Custom Fabrication | ||
PTFE Thread Seal Tape | Han Yang Chemical Co. Ltd. | 3032292 | Teflon™ tape |
Sulfuric acid | Jin Chemical Co. Ltd. | S280823 | H2SO4, 95% Purity |
Hydrogen peroxide | Jin Chemical Co. Ltd. | H290423 | H2O2, 35% in water |
Sonicator | Daihan Scientific Co. Ltd. | WUC-A02H | Table-top Ultrasonic Cleaner |
2.2) Aminosilanization on Glass Surface | |||
N-[3-(Trimethoxysilyl)propyl] ethylenediamine | Sigma-Aldrich | 104884 | |
Glacial Acetic Acid | Duksan Chemicals | 414 | 99% Purity |
Methyl Alcohol | Jin Chemical Co. Ltd. | M300318 | 99.9% Purity |
Polypropylene Container | Qorpak | PLC-04907 | |
Ethyl Alcohol | Jin Chemical Co. Ltd. | A300202 | 99.9% Purity |
2.3) PEGylation of the coverslip | |||
Sodium Bicarbonate | Sigma-Aldrich | S5761 | |
Syringe Filter | Sartorius | 16534----------K | |
Biotin-PEG-SC | Laysan Bio | Biotin-PEG-SC-5000 | |
mPEG-SVG | Laysan Bio | MPEG-SVA-5000 | |
Acetone | Jin Chemical Co. Ltd. | A300129 | 99% Purity |
Microscope Slides | Marienfeld-Superior | 1000612 | ~76 mm x 26 mm x 1 mm |
3. Assembling a Flow Chamber | |||
Acrylic Support | Custom Fabrication | ||
Double-sided Tape | 3M | Transparent type | |
Quick-dry Epoxy | 3M | ||
Polyethylene Tubing | Cole-Parmer | 06417-11, 06417-21 | |
Gas Tight 250 µl Syringe | Hamilton | 81165 | |
Syringe Pump | New Era Pump Systems Inc. | NE-1000 | |
4. Sample Loading into Flow Chamber | |||
Neutravidin | Thermo Scientific | 31000 | |
Tris base | Sigma-Aldrich | T1503-5KG | Trizma base |
Microscope | Olympus | IX70 | |
EMCCD Camera | Q Imaging | Rolera EM-C2 | |
Solid-state Laser (488 nm) | Oxxius | LBX488 | |
Alconox | Alconox Inc. |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены