JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Эта работа сообщает инновационные кремния накренилась волоконно оптических зондирования платформа (Si-FOSP) для измерения высокого разрешения и быстрого реагирования различных физических параметров, таких как температуры, расхода и излучения. Применение этого Si-FOSP интервал от океанографических исследований, Механическая промышленность, фьюжн энергетических исследований.

Аннотация

В этой статье мы представляем инновационные и практически перспективных волоконно оптических зондирования платформы (FOSP) что мы предложили и продемонстрировала недавно. Этот FOSP опирается на интерферометра кремния Фабри-Перо (ИНФ) прилагается к концу волокна, упоминаемый как Si-FOSP в этой работе. Si-FOSP генерирует interferogram определяется длиной оптического пути (ОБН) кремния полости. Параметр изменяет ОБН и таким образом смены interferogram. Благодаря уникальным свойствам оптической и термической материала кремния этот Si-FOSP экспонатов выгодно производительности с точки зрения чувствительность и скорость. Кроме того пожилые кремния изготовление промышленности наделяет Si-FOSP отличную воспроизводимость и низкой стоимости к практическому применению. В зависимости от конкретного применения либо низкой утонченность или средней утонченности версия будет использоваться, и методы демодуляции два различных данных будет принят соответственно. Подробные протоколы для изготовления обе версии Si-FOSP будет оказываться. Три представителя приложений и их соответствии результаты будут показаны. Первый прототип подводный термометр для профилирования термоклины океан, второй-расходомер для измерения скорости потока в океане, и последний является Болометр, используется для контроля выхлопных газов излучения от магнитно ограничивается высокотемпературной плазмы.

Введение

Датчики оптоволоконные (FOSs) были в центре внимания многих исследователей из-за ее уникальные свойства, такие как ее небольшой размер, его низкой стоимости, его легкий вес и его иммунитет к электромагнитные помехи (EMI)1. Эти ФОСС нашли широкое применение во многих областях, таких, как мониторинг окружающей среды, наблюдения океана, разведки нефти и производственного процесса, среди других. Когда дело доходит до температуры связанных зондирования, традиционные ФОСС не превосходят с точки зрения резолюции и скорость для случаев, где измерение минуту и быстро температуры является желательным. Эти ограничения вытекают из оптических и тепловые свойства кварцевого материала, на котором основаны многие традиционные ФОСС. С одной стороны коэффициент термо оптические (TOC) и коэффициент теплового расширения (TEC) кремния являются 1.28x10-5 RIU / ° C и 5.5x10-7 m/(m·°C), соответственно; Эти значения приводят к чувствительности температуры лишь около 13 pm / ° C вокруг волны 1550 нм. С другой стороны температуропроводности, которая является мерой скорости температуры изменения в ответ на обмен тепловой энергии, это только 1.4x10-6 m2/s для кремния; Это значение не является улучшенный для повышения скорости на основе силики ФОСС.

Волоконно оптического зондирования платформы (FOSP) сообщалось в этой статье перерывов выше ограничения на основе кварцевого ФОСС. Новый FOSP использует кристаллического кремния как ключ зондирования материала, который формирует интерферометра Фабри-Перо высокого качества (ИНФ) на конце волокна, здесь называют FOSP накренилась кремния (Si-FOSP). На рисунке 1 показана схема и оперативный принцип головки датчика, который является ядром Si-FOSP. Сенсорная головка по существу состоит из кремния ИПИ, чьи спектр отражения особенности серии периодических полос. Разрушительного вмешательства происходит, когда ОБН удовлетворяет 2nL = Nλ, где n и L преломления и длина полости кремния FP, соответственно, и N — это целое число, которое представляет порядок в вырез fringe. Таким образом позиции интерференционных полос реагировать ОБН полости кремния. В зависимости от конкретного применения, кремния ИПИ могут быть сделаны в двух типов: низкий утонченность ИПИ и средней утонченности инф. Низкий утонченность ИПИ имеет низкой отражательной способности для обоих концах полости кремния, а средней утонченности ИПИ высокой отражательной способностью для обоих концах кремния полости. Коэффициенты отражения интерфейсов кремния воздух и кремния волокна составляют примерно 30% и 18%, таким образом единственным кремния ИПИ, показан на рисунке 1a по сути низким утонченность инф. Покрытие слоем тонкой высокой отражательной способности (HR) на обоих концах, средней утонченности кремния, который ИПИ создан (рис. 1b). Отражательная способность HR покрытия (диэлектрик или золото) может достигать 98%. Для обоих типов Си-FOSP n и L увеличить когда температура повышается. Таким образом осуществляя мониторинг смены бахрома, Флуктуация температуры можно дедуцировать. Обратите внимание, что за такое же количество волны сдвига, средней утонченности ИПИ дает лучше дискриминации из-за гораздо более узкими бахрома паз (рис. 1С). В то время как Si-FOSP средней утонченности имеет лучшее разрешение, низкая утонченность Si-FOSP имеет больший динамический диапазон. Таким образом выбор между этими двумя версиями зависит от требований конкретного приложения. Кроме того из-за большой разницы в полную ширину в половина максимума (FWHM) низкой утонченность и средней утонченности кремния FPIs, их методы Демодулирование сигнала отличаются. Например, теоретические FWHM 1,5 Нм уменьшается о 50 раз только 30 вечера, когда обоих концах единственным кремния ИПИ покрыты слоем HR 98%. Таким образом, для низкой утонченность Si-FOSP, высокоскоростной спектрометр будет достаточно для сбора и обработки данных, в то время как сканирующий лазер должен использоваться для демодуляции средней утонченности Si-FOSP благодаря гораздо короче FWHM, которые не могут быть разрешены хорошо спектрометр. Эти два метода демодуляции будет объяснено в протоколе.

Для Датчик температуры с точки зрения резолюции превосходит кремниевого материала выбрали здесь. Для сравнения TOC и TEC кремния являются RIU / ° C 1.5x10-4 и 2.55x10-6 m/(m∙°C), соответственно, приводит к чувствительности температуры около 84,6 м / ° C, которая около 6,5 раза выше, чем у всех на основе силики ФОСС2.  Помимо этого намного выше чувствительность мы продемонстрировали средняя длина волны, отслеживания метод, чтобы уменьшить уровень шума и таким образом улучшить разрешение для датчика низкий утонченность, ведущих к температуре резолюции 6 x 10-4 ° C 2, в Сравнение в резолюции 0,2 ° C для всех на основе силики Фос3. Резолюция далее улучшена быть 1.2x10от -4 ° C для средней утонченности версии4.  Кремниевого материала превосходит также для зондирования с точки зрения скорости. Для сравнения температуропроводности кремния является 8.8x10-5 m2/s, который более чем в 60 раз выше, чем у кремния2.  В сочетании с небольшой след (например, 80 мкм диаметр, толщина 200 мкм), время отклика 0,51 МС для кремния, который был FOS продемонстрировал2, по сравнению с 16 мс микро кремний волокна автосцеп подсказка температуры датчик5.  Хотя некоторые исследовательские работы, связанные с измерения температуры с помощью очень тонкий кремния фильм, как другие группы6,,78,9, никто из них не было сообщено зондирования материал обладает производительность наших датчиков с точки зрения резолюции или скорость. Например, датчик с разрешением только 0.12 ° C и время отклика длиной 1 s было сообщено. 7 , который был лучше разрешение температуры 0,064 ° c сообщили10;  Однако скорость ограничивается сравнительно громоздкие Сенсорная головка. Что делает Si-FOSP уникальный лежит в новый метод изготовления и обработки данных алгоритмом.

Помимо вышеуказанных преимуществ для Датчик температуры Si-FOSP также могут быть разработаны в различные датчики температуры, направленные в измерения различных параметров, таких как газа давление11, воздуха или воды потока12,13 ,14 и излучение4,15.  Эта статья представляет подробное описание датчика изготовление и сигнал демодуляции протоколы наряду с три представителя приложений и их результаты.

протокол

1. изготовление датчиков низкого утонченность

  1. Изготовить кремния столбов. Картины кусок 200-мкм толщиной двойной стороне полированные (DSP) кремниевых пластин в автономных колонны кремния (Рисунок 2a), используя стандартные микро электро механические системы (MEMS) изготовление облегчает.
    Примечание: Узорные вафельные тычковой на другой больше кремниевой пластины с тонким слоем фоторезиста. Сила сцепления фоторезиста достаточно сильны, чтобы провести столпов вертикально, но также достаточно слабы, чтобы отсоединить от субстрата для последующих шагов.
  2. Подготовка вводного волокна. Сдирать пластмассоваяоболочка дистального конца одномодовое оптоволокно. Очистите лишил раздел, используя объектив ткани, смоченной спиртом. Рассекающий удар уборка волокна с Тесак оптического волокна.
  3. Нанесите тонкий слой УФ отверждаемыми клея на торец рассеченного lead-in волокна (рис. 2b). Положите маленькая капля УФ отверждаемыми клея на кусок стекла слайда. Тонкий слой клея спин покрытие или вручную размахивая стеклянное скольжение. Передача слой клея до конца волокна, нажав торца волокна lead-in против стеклянное скольжение.
  4. Прикрепите компонент кремния до конца волокна. Выровняйте lead-in волокна с одним из столпов кремния, тем временем контролировать спектр кремния ИПИ, с помощью спектрометра отражение в реальном времени. Используйте УФ-лампы для лечения клей при удовлетворительной спектра наблюдается (рис. 2 c).
    Примечание: В общем, процесс сушки занимает около 10-15 минут.
  5. Отсоедините датчик от субстрата. После УФ клей полностью вылечить, поднимите вверх lead-in волокно вместе с силиконовой столба, отделен от субстрата (Рисунок 2d).
    Примечание: Некоторые остаточных фоторезиста оставался на верхней поверхности кремния столба (Рисунок 2e). В большинстве случаев остаточных фоторезиста не влияет на функции датчика. При необходимости, в слое фоторезиста могут быть удалены от алкоголя.
  6. Изучите головки изготовлены датчика. Используйте микроскоп для изучения геометрии головки изготовлены датчика. Типичный образ датчик успешно изготовлены проявляется в рисунке 2f.

2. изготовление датчиков средней утонченности

  1. Герб обе стороны кремниевой пластины с высокой отражательной зеркалами. Пальто с одной стороны-толщиной 75 мкм полированные двойной стороне кремниевой пластины с 150 Нм золото слоем толщиной с помощью распыления покрытия машины и покрыть другой стороне с высокой отражательной (HR) диэлектрические зеркала.
    Примечание: Диэлектрическая HR покрытие было сделано путем вне компании; быть не менее чем на 98% отражательной способности этого покрытия проверены компании. Однако подробные материалы и структуры покрытия неизвестны из-за собственной защиты компанией, смотрите Таблицу материалов для получения дополнительной информации.
  2. Подготовьте коллимированных lead-in волокна. Сращивания короткий раздел градуированных индекс многорежимный волокна (GI-ММФ) с одномодовое волокно, а затем, под оптическим микроскопом, Клив GI-ММФ с четверть периода света траектории в рамках ММФ осталось сформировать коллиматора волокна (Рисунок 3А ).
    Примечание: GI-ММФ используется для расширения диаметр модальных поле так что спектра с лучшей видимости можно получить4,16. GI-ММФ, который составляет около 250 мкм в этой работе, длиной ровно четверть периода траектории луча.
  3. Придаем фрагментированных двухсторонним покрытием кремния волокна lead-in. Соберите датчик средней утонченности, выполните аналогичные шаги крепления столба кремния до конца волокна для изготовления низким утонченность датчики (шаги 1,3 – 1,5).
    Примечание: На сторону с диэлектрической оболочки будет прилагаться к коллиматора, чтобы в ближайшие света (рис. 3b, 3 c). В этом случае предыдущего столба кремния заменяется кремния фрагмента, который не был рисунком. В будущем с высокой отражательной зеркала, будет покрытием узорной кремниевой пластины, чтобы датчики более единообразное и проще для изготовления. В изготовление шаги 1.3-1.5 разница, что насечку спектры отражения с надлежащей видимости должны быть получены первые прежде чем клей был переведен к торцу коллиматора.
  4. Польский язык фрагмента неправильной формы кремния в круглую форму с помощью волокна, шлифовальные машины.
  5. Изучите головки изготовлены датчика. Использовать микроскоп для изучения головки датчика, чтобы убедиться, что достигается желательно круглой формы (рис. 3d).

3. сигнал демодуляции для Low утонченность Si-FOSP

Примечание: Система, используемая для демодуляции низким утонченность Si-FOSP показан на рисунке 4a. Следующие шаги подробно помогают настраивать систему и выполнять обработку данных.

  1. Подключите широкополосный источник C-диапазона для порта 1 Оптический циркулятор.
  2. Сплайс порт 2 оптических термостат с вводного волокна низкой утонченность датчика.
  3. Подключите порт 3 Оптический циркулятор к высокоскоростной спектрометра, который взаимодействует с компьютером для хранения данных.
  4. Проверьте спектр датчика, чтобы убедиться, что система работает правильно. Увидеть типичные спектра, показано на рисунке 4В.

4. сигнал демодуляции для средней утонченности Si-FOSP

Примечание: Система, используемая для демодуляции средней утонченности Si-FOSP показан на рисунке 5А. Следующие шаги подробно помогают настраивать систему и делать пост-обработки данных.

  1. Развертки перестраиваемый Лазер DFB с использованием текущего контроллера.
    Примечание: Потрясающий напряжения пик пик, который варьируется для различных лазеров и контроллеров, должна быть достаточно большой, чтобы покрыть зазубрина спектра.
  2. Соедините выход Перестраиваемый лазер для порта 1 Оптический циркулятор.
  3. Сплайс-порт 2 оптических термостат с датчиком средней утонченности.
  4. Подключите порт 3 Оптический циркулятор к фотоприемника.
  5. Используйте устройство сбора данных для чтения вывода Фотоприемник, который хранится на компьютере.
  6. Проверьте спектр датчика, чтобы убедиться, что система работает правильно. Увидеть типичный кадр спектра, показано на рисунке 5b. Найти положение долины с помощью полиномиальной кривой.

Результаты

Si-FOSP как подводный термометр для профилирования океан термоклины
Последние океанографические исследования показали, что размывание подводных изображений проистекает не только из мутности в загрязненных водах, но и от температуры микроструктур в чистый о?...

Обсуждение

Выбор размера (Длина и диаметр) кремния ИПИ производится по компромисс между требованиями по резолюции и скорость. В общем меньший размер обеспечивает более высокую скорость, но также уменьшает резолюции2. Короткая длина выгодно для получения более высокой скорости, но это...

Раскрытие информации

США патент (№ 9995628 B1) была издана для защиты соответствующих технологий.

Благодарности

Эта работа была поддержана США, военно-морской научно-исследовательской лаборатории (Nos. N0017315P0376, N0017315P3755); Офис в США военно-морских исследований (Nos. N000141410139, N000141410456); Министерство энергетики США (Nos. DE-SC0018273, ДЕ AC02-09CH11466, ДЕ AC05-00OR22725).

Материалы

NameCompanyCatalog NumberComments
200 Proof Pure EthanolKoptecV1001
5 Channels Duplex CWDMFiber Store5MDD-ABS-FSCWDM
Butterfly Laser Diode MountsTholabsLM14S2
CastAway CTDYellow Springs Instrument
CTDSeabirdSBE 19plus
Current MeterNortekVector
Data Acquisition DeviceNational InstrumentsNIUSB4366
Digital OscilloscopeRIGOLDS1204B200 MHz 2 GSa/s
Diode LaserThorlabsLM9LPWavelength: 632 nm
Fixed BNC Terminator KitThorlabsFTK01
Function Waveform Generator RIGOLDG4162160 MHz 500 GSa/s
High Precision CleaverFujikuraCT-32
High Reflection Dielectric CoatingEvaporated Coating INC (ECI)Materials and structure of the coating are unknown
I-MON 512 SpectrometerIbsen PhtonicsP/N: 1257110
InGaAs Biased DetectorTholabsDET01CFCFC/PC output:0-10V; Quantity: 2
Laser DiodeQphotonicQFLD-405-20SWavelength: 405 nm
Laser Diode Current ControllerTholabsLDC 210C1 A and 100 mA range 
Laser Diode Temperature ControllerTholabsTEC 200CQuantity: 2
Latex Examination GlovesHCS
Micro SlidesCorning Incorporated
Narrow Linewidth DFB LaserEblanaEP1550-NLW-B06-100FMWavelength:1550 nm
Optical Fiber Fusion SplicerSumitomo electric industries, LTD3822-2
Optical Microscope and MonitorIkegami Tsushinki CompanyPM-127
Optical Spectrum AnalyzerYokogawaAQ6370Cwavelength range: 600-1700 nm
Polish MachineULTRA TEC41076
Post-mountable IrisesThorlabsQuantity: 2
Pump LaserGooch and Housego0400-0974-SMWavelength: 980 nm
Si Amplified PhotodetectorThorlabsPDA36AWavelength: 350-1100 nm
Silicon waferUniversity Waferthickness: 10 µm, 200 µm, 75 µm, 40 µm
Single mode fiber CorningSMF-28
Single Mode Fused  Fiber CouplerThorlabsWavelength: 1550 nm
SM 125 interogratorMicron Optics
Submersible Aquarium PumpSonglongSL-403
Superluminscent LEDDenselight SemiconductorsDL-BP1-1501Awavelength range:1510-1590 nm
Syringe PumpCole Parmer74905-02
Travel Translation StageThorlabsLT1
UV curable glueEpoxy TechnologyPB109077
UVGL-15 Compact UV LmapUVPP/N:95-0017-09254/365 nm
Variable Optical AttenuatorsTholabsM-VA/00016951 P/N: VOA50-APC

Ссылки

  1. Lee, B. Review of the present status of optical fiber sensors. Optical Fiber Technology. 9, 57-79 (2003).
  2. Liu, G., Han, M., Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Perot cavity. Optics Express. 23, 7237-7247 (2015).
  3. Hatta, A. M., Rajan, G., Semenova, Y., Farrell, G. SMS fibre structure for temperature measurement using a simple intensity-based interrogation system. Electronics Letters. 45, 1069 (2009).
  4. Sheng, Q., Liu, G., Reinke, M. L., Han, M. A fiber-optic bolometer based on a high-finesse silicon Fabry-Perot interferometer. Review of Scientific Instruments. , 065002 (2018).
  5. Ding, M., Wang, P., Brambilla, G. Fast-response high-temperature microfiber coupler tip thermometer. IEEE Photonics Technology Letters. 24, 1209-1211 (2012).
  6. Berthold, J. W., Reed, S. E., Sarkis, R. G. Reflective fiber optic temperature sensor using silicon thin film. Optical Engineering. 30, 524-528 (1991).
  7. Kajanto, I., Friberg, A. T. A silicon-based fibre-optic temperature sensor. Journal of Physics E: Scientific Instruments. 21, 652-656 (1988).
  8. Schultheis, L., Amstutz, H., Kaufmann, M. Fiber-optic temperature sensing with ultrathin silicon etalons. Optics Letters. 13, 782-784 (1988).
  9. Zhang, S., et al. Temperature characteristics of silicon core optical fiber Fabry-Perot interferometer. Optics Letters. 40, 1362-1365 (2015).
  10. Cocorullo, G., Corte, F. G. D., Iodice, M., Rendina, I., Sarro, P. M. A temperature all-silicon micro-sensor based on the thermo-optic effect. IEEE Transactions on Electron Devices. 44, 766-774 (1997).
  11. Liu, G., Han, M. Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer. Optics Letters. 40, 2461-2464 (2015).
  12. Liu, G., Hou, W., Qiao, W., Han, M. Fast-response fiber-optic anemometer with temperature self-compensation. Optics Express. 23, 13562-13570 (2015).
  13. Liu, G., Sheng, Q., Hou, W., Han, M. Optical fiber vector flow sensor based on a silicon Fabry-Perot interferometer array. Optics Letters. 41, 4629-4632 (2016).
  14. Liu, G., Sheng, Q., Geraldo, R. L. P., Hou, W., Han, M. A fiber-optic water flow sensor based on laser-heated silicon Fabry-Perot cavity. Proceedings of SPIE. 9852, 98521B (2016).
  15. Reinke, M. L., Han, M., Liu, G., Gv Eden, G., Evenblij, R., Haverdings, M. Development of plasma bolometers using fiber-optic temperature sensors. Review of Scientific Instruments. 87, 11E708 (2016).
  16. Zhang, Y., et al. Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator. IEEE Photonics Journal. 2, 469-481 (2010).
  17. Hou, W. . Ocean sensing and monitoring. , (2013).
  18. Hou, W., Woods, S., Jarosz, E., Goode, W., Weidemann, A. Optical turbulence on underwater image degration in natural environments. Applied Optics. 51, 2678-2686 (2012).
  19. Hou, W., Jarosz, E., Woods, S., Goode, W., Weidemann, A. Impacts of underwater turbulence on acoustical and optical signals and their linkage. Optics Express. 21, 4367-4375 (2013).
  20. Nootz, G., Jarosz, E., Dalgleish, F. R., Hou, W. Quantification of optical turbulence in the ocean and its effects on beam propagation. Applied Optics. 55, 8813-8820 (2016).
  21. Nootz, G., Matt, S., Kanaev, A., Judd, K., Hou, W. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank. Applied Optics. 56, 6065-6072 (2017).
  22. Matt, S., et al. A controlled laboratory environment to study EO signal degradation due to underwater turbulence. Proceedings of SPIE. 9459, 94590H (2015).
  23. Han, M., Liu, G., Hou, W. Fiber-optic temperature and flow sensor system and methods. U.S. Patent. , (2018).
  24. Kallenbach, A., et al. Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO. Plasma Physics and Controlled Fusion. 55, 124041 (2013).
  25. . Alcator C-Mod Available from: https://commons.wikimedia.org/wiki/File:Alcator_C-Mod_Tokamak_Interior.jpg (2018)
  26. Meister, H., Willmeroth, M., Zhang, D., Gottwald, A., Krumrey, M., Scholze, F. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes. Review of Scientific Instruments. 84, 123501 (2013).
  27. Peterson, B. J., et al. Development of imaging bolometers for magnetic fusion reactors. Review of Scientific Instruments. 79, 10E301 (2008).
  28. Liu, G., Sheng, Q., Dam, D., Hua, J., Hou, W., Han, M. Self-gauged fiber-optic micro-heater with an operation temperature above 1000 °C. Optics Letters. 42, 1412-1415 (2017).
  29. Liu, G., Hou, W., Han, M. Unambiguous peak recognition for a silicon Fabry-Perot interferometric temperature sensor. Journal of Lightwave Technology. 36, 1970-1978 (2018).
  30. Liu, G., Sheng, Q., Hou, W., Han, M., High-resolution, High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities. Optics Letters. 41, 5134-5137 (2016).

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

143bolometry

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены