Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This work reports an innovative silicon-tipped fiber-optic sensing platform (Si-FOSP) for high-resolution and fast-response measurement of a variety of physical parameters, such as temperature, flow, and radiation. Applications of this Si-FOSP span from oceanographic research, mechanical industry, to fusion energy research.

Abstract

In this article, we introduce an innovative and practically promising fiber-optic sensing platform (FOSP) that we proposed and demonstrated recently. This FOSP relies on a silicon Fabry-Perot interferometer (FPI) attached to the fiber end, referred to as Si-FOSP in this work. The Si-FOSP generates an interferogram determined by the optical path length (OPL) of the silicon cavity. Measurand alters the OPL and thus shifts the interferogram. Due to the unique optical and thermal properties of the silicon material, this Si-FOSP exhibits an advantageous performance in terms of sensitivity and speed. Furthermore, the mature silicon fabrication industry endows the Si-FOSP with excellent reproducibility and low cost toward practical applications. Depending on the specific applications, either a low-finesse or high-finesse version will be utilized, and two different data demodulation methods will be adopted accordingly. Detailed protocols for fabricating both versions of the Si-FOSP will be provided. Three representative applications and their according results will be shown. The first one is a prototype underwater thermometer for profiling the ocean thermoclines, the second one is a flow meter to measure flow speed in the ocean, and the last one is a bolometer used for monitoring exhaust radiation from magnetically confined high-temperature plasma.

Introduction

Fiber-optic sensors (FOSs) have been the focus for many researchers due to its unique properties, such as its small size, its low cost, its light weight, and its immunity to electromagnetic interference (EMI)1. These FOSs have found wide applications in many areas such as environmental monitoring, ocean surveillance, oil exploration, and industrial process among others. When it comes to the temperature-related sensing, the traditional FOSs are not superior in terms of resolution and speed for the cases where measurement of minute and fast temperature variations is desirable. These limitations stem from the optical and thermal properties of the ....

Protocol

1. Fabrication of Low-Finesse Sensors

  1. Fabricate the silicon pillars. Pattern a piece of 200-µm-thick double-side-polished (DSP) silicon wafer into standalone silicon pillars (Figure 2a), using standard micro-electro-mechanical system (MEMS) fabrication facilitates.
    NOTE: The patterned wafer is bonded on another larger silicon wafer using a thin layer of photoresist. The bonding force of the photoresist is strong enough to hold the pillars upright, but also weak enough.......

Representative Results

Si-FOSP as an underwater thermometer for profiling ocean thermoclines
Recent oceanographic research has demonstrated that the blurring of underwater imaging stems not only from turbidity in contaminated waters but also from temperature microstructures in clean ocean17,18. The latter effect has been the focus of many oceanographers, aiming to find an effective way to rectify the blurred images

Discussion

The choice of the size (length and diameter) of the silicon FPI is made upon the tradeoff between requirements on the resolution and speed. In general, a smaller size provides a higher speed but also reduces the resolution2. A short length is advantageous for obtaining a higher speed, but it is not superior for obtaining a high resolution due to the expanded FWHM of the reflection notches. Using HR coatings to reduce the FWHM can help improve the resolution, but it will limit the dynamic range due.......

Acknowledgements

This work was supported by U.S. Naval Research Laboratory (Nos. N0017315P0376, N0017315P3755); U.S. Office of Naval Research (Nos. N000141410139, N000141410456); U.S. Department of Energy (Nos. DE-SC0018273, DE-AC02-09CH11466, DE-AC05-00OR22725).

....

Materials

NameCompanyCatalog NumberComments
200 Proof Pure EthanolKoptecV1001
5 Channels Duplex CWDMFiber Store5MDD-ABS-FSCWDM
Butterfly Laser Diode MountsTholabsLM14S2
CastAway CTDYellow Springs Instrument
CTDSeabirdSBE 19plus
Current MeterNortekVector
Data Acquisition DeviceNational InstrumentsNIUSB4366
Digital OscilloscopeRIGOLDS1204B200 MHz 2 GSa/s
Diode LaserThorlabsLM9LPWavelength: 632 nm
Fixed BNC Terminator KitThorlabsFTK01
Function Waveform Generator RIGOLDG4162160 MHz 500 GSa/s
High Precision CleaverFujikuraCT-32
High Reflection Dielectric CoatingEvaporated Coating INC (ECI)Materials and structure of the coating are unknown
I-MON 512 SpectrometerIbsen PhtonicsP/N: 1257110
InGaAs Biased DetectorTholabsDET01CFCFC/PC output:0-10V; Quantity: 2
Laser DiodeQphotonicQFLD-405-20SWavelength: 405 nm
Laser Diode Current ControllerTholabsLDC 210C1 A and 100 mA range 
Laser Diode Temperature ControllerTholabsTEC 200CQuantity: 2
Latex Examination GlovesHCS
Micro SlidesCorning Incorporated
Narrow Linewidth DFB LaserEblanaEP1550-NLW-B06-100FMWavelength:1550 nm
Optical Fiber Fusion SplicerSumitomo electric industries, LTD3822-2
Optical Microscope and MonitorIkegami Tsushinki CompanyPM-127
Optical Spectrum AnalyzerYokogawaAQ6370Cwavelength range: 600-1700 nm
Polish MachineULTRA TEC41076
Post-mountable IrisesThorlabsQuantity: 2
Pump LaserGooch and Housego0400-0974-SMWavelength: 980 nm
Si Amplified PhotodetectorThorlabsPDA36AWavelength: 350-1100 nm
Silicon waferUniversity Waferthickness: 10 µm, 200 µm, 75 µm, 40 µm
Single mode fiber CorningSMF-28
Single Mode Fused  Fiber CouplerThorlabsWavelength: 1550 nm
SM 125 interogratorMicron Optics
Submersible Aquarium PumpSonglongSL-403
Superluminscent LEDDenselight SemiconductorsDL-BP1-1501Awavelength range:1510-1590 nm
Syringe PumpCole Parmer74905-02
Travel Translation StageThorlabsLT1
UV curable glueEpoxy TechnologyPB109077
UVGL-15 Compact UV LmapUVPP/N:95-0017-09254/365 nm
Variable Optical AttenuatorsTholabsM-VA/00016951 P/N: VOA50-APC

References

Explore More Articles

Fiber optic Sensing PlatformHigh ResolutionFast ResponseTemperature MeasurementTurbulence CharacterizationMEMS FabricationSilicon PillarsOptical FiberUV Curable GlueReflection SpectrumSensor InterrogatorTranslation Stage

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved