Sign In

15.31 : α-Alkylation of Ketones via Enolate Ions

Ketones with α protons are deprotonated by strong bases like lithium diisopropylamide (LDA) to form enolate ions. The anion is stabilized by resonance, and its hybrid structure exhibits negative charges on the carbonyl oxygen and the α carbon. This ambident nucleophile can attack an electrophile via two possible sites: the carbonyl oxygen, known as O-attack, or the α carbon, known as C-attack. The nucleophilic attack via the carbanionic site is preferred. This is due to the strong interaction of the positive counterpart of the base with the anionic oxygen, which restricts the approaching electrophile, making the reaction less favorable. Also, the product obtained through C-attack is more stable than that obtained through O-⁠attack, as the stronger C=O π bond is retained in the former, whereas a weaker C=C π bond is preserved in the latter.

A subsequent reaction of the enolate with electrophiles such as alkyl halides produces an α-alkylated ketone via the SN2 pathway. The α-alkylation of ketones is achieved with the halides of primary alkyl, benzyl, and allylic groups. With secondary and tertiary alkyl halides, elimination predominates over substitution.

Tags
alkylationKetonesEnolate IonsLDANucleophilic AttackC attackO attackSN2Primary Alkyl HalidesBenzyl HalidesAllylic HalidesSecondary Alkyl HalidesTertiary Alkyl HalidesElimination

From Chapter 15:

article

Now Playing

15.31 : α-Alkylation of Ketones via Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.1 : Reactivity of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.2 : Reactivity of Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.2K Views

article

15.3 : Types of Enols and Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.5 : Regioselective Formation of Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.6 : Stereochemical Effects of Enolization

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.7 : Acid-Catalyzed α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.8 : Base-Promoted α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.9 : Multiple Halogenation of Methyl Ketones: Haloform Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.7K Views

article

15.10 : α-Halogenation of Carboxylic Acid Derivatives: Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.11 : α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.7K Views

article

15.12 : Reactions of α-Halocarbonyl Compounds: Nucleophilic Substitution

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.13 : Nitrosation of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.14 : C–C Bond Formation: Aldol Condensation Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

10.4K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved