Sign In

21.16 : Molecular Weight of Step-Growth Polymers

Step growth polymerization involves bi or multifunctional monomers. Bifunctional monomers react to form linear step growth polymers, whereas multifunctional monomers react to form non-linear or branched polymers.

As the step-growth polymerization involves step-wise condensation of monomers, the molecular weight also builds up eventually. Consequently, high molecular weight polymers are obtained at the late stages of the polymerization, where 99% of monomers have been consumed.

The extent of the reaction can be obtained from the Carothers equation.

Figure1

Here, Xn describes the average chain length, P describes the extent of the reaction, N0 is the number of molecules at the beginning of the polymerization, and N is the number of molecules left in the reaction after some time.

The equation above shows that in step-growth polymerization, a high monomer conversionis required to achieve a high degree of polymerization.

The polydispersity index(PDI) is a measure of the broadness of molecular weight distribution in a given polymer sample. PDI of a polymer is the ratio of the weight and number average of the molecular weight of the polymer. The PDI is unity if all the polymer molecules are of the same size.

In the case of step-growth polymers, the PDI is 2, indicating a broad molecular weight distribution.

Tags
Molecular WeightStep growth PolymerizationBifunctional MonomersMultifunctional MonomersCarothers EquationAverage Chain LengthExtent Of ReactionMonomer ConversionDegree Of PolymerizationPolydispersity IndexPDIMolecular Weight DistributionPolymer Sample

From Chapter 21:

article

Now Playing

21.16 : Molecular Weight of Step-Growth Polymers

Synthetic Polymers

2.0K Views

article

21.1 : Characteristics and Nomenclature of Homopolymers

Synthetic Polymers

2.5K Views

article

21.2 : Characteristics and Nomenclature of Copolymers

Synthetic Polymers

2.0K Views

article

21.3 : Polymers: Defining Molecular Weight

Synthetic Polymers

2.3K Views

article

21.4 : Polymers: Molecular Weight Distribution

Synthetic Polymers

2.7K Views

article

21.5 : Polymer Classification: Architecture

Synthetic Polymers

2.2K Views

article

21.6 : Polymer Classification: Crystallinity

Synthetic Polymers

2.3K Views

article

21.7 : Polymer Classification: Stereospecificity

Synthetic Polymers

2.1K Views

article

21.8 : Radical Chain-Growth Polymerization: Overview

Synthetic Polymers

2.0K Views

article

21.9 : Radical Chain-Growth Polymerization: Mechanism

Synthetic Polymers

2.1K Views

article

21.10 : Radical Chain-Growth Polymerization: Chain Branching

Synthetic Polymers

1.7K Views

article

21.11 : Anionic Chain-Growth Polymerization: Overview

Synthetic Polymers

1.8K Views

article

21.12 : Anionic Chain-Growth Polymerization: Mechanism

Synthetic Polymers

1.8K Views

article

21.13 : Cationic Chain-Growth Polymerization: Mechanism

Synthetic Polymers

2.0K Views

article

21.14 : Ziegler–Natta Chain-Growth Polymerization: Overview

Synthetic Polymers

2.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved