JoVE Logo
Faculty Resource Center

Sign In

Consider two charges of equal magnitude but opposite signs. If they cannot be separated by an external electric field, the system is called a permanent dipole. For example, the water molecule is a dipole, making it a good solvent.

Theoretically, studying electric dipoles leads to understanding why the resultant electric forces around us are weak. Since electric forces are strong, remnant net charges are rare. Hence, the interaction between dipoles helps us understand electrical interactions in ordinary objects around us.

When a permanent dipole is placed in a uniform electric field, it experiences no net force. However, it orients itself along the field so that the positive charge end points toward it. This interaction between the dipole and the electric field can be scrutinized by calculating the net torque it experiences.

Simple vector algebra leads to an interesting observation. The net torque depends on a cross-product of a new vector, called the electric dipole moment, and the electric field. The dipole moment is proportional to the magnitude of each charge and the separation between them.

If a molecule has a large separation between its positive and negative charge centers, it has a higher dipole moment. If the charge separated is itself high, its dipole moment is larger.

The dipole moment points from the negative charge to the positive charge. In the absence of any other torque, the dipole rotates and aligns with the field. The observation implies that the potential energy is associated with the orientation of the dipole with respect to the external electric field.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved