Sign In

22.15 : Electric Dipoles and Dipole Moment

Consider two charges of equal magnitude but opposite signs. If they cannot be separated by an external electric field, the system is called a permanent dipole. For example, the water molecule is a dipole, making it a good solvent.

Theoretically, studying electric dipoles leads to understanding why the resultant electric forces around us are weak. Since electric forces are strong, remnant net charges are rare. Hence, the interaction between dipoles helps us understand electrical interactions in ordinary objects around us.

When a permanent dipole is placed in a uniform electric field, it experiences no net force. However, it orients itself along the field so that the positive charge end points toward it. This interaction between the dipole and the electric field can be scrutinized by calculating the net torque it experiences.

Simple vector algebra leads to an interesting observation. The net torque depends on a cross-product of a new vector, called the electric dipole moment, and the electric field. The dipole moment is proportional to the magnitude of each charge and the separation between them.

If a molecule has a large separation between its positive and negative charge centers, it has a higher dipole moment. If the charge separated is itself high, its dipole moment is larger.

The dipole moment points from the negative charge to the positive charge. In the absence of any other torque, the dipole rotates and aligns with the field. The observation implies that the potential energy is associated with the orientation of the dipole with respect to the external electric field.

Tags
Electric DipoleDipole MomentPermanent DipoleElectric FieldNet TorqueCharge SeparationElectrical InteractionsVector AlgebraPositive ChargeNegative ChargePotential EnergySolvent Properties

From Chapter 22:

article

Now Playing

22.15 : Electric Dipoles and Dipole Moment

Electric Charges and Fields

4.5K Views

article

22.1 : Electric Charges

Electric Charges and Fields

15.3K Views

article

22.2 : Sources and Properties of Electric Charge

Electric Charges and Fields

8.4K Views

article

22.3 : Conductors and Insulators

Electric Charges and Fields

7.2K Views

article

22.4 : Charging Conductors By Induction

Electric Charges and Fields

6.7K Views

article

22.5 : Coulomb's Law

Electric Charges and Fields

7.5K Views

article

22.6 : Coulomb's Law and The Principle of Superposition

Electric Charges and Fields

7.6K Views

article

22.7 : Comparison Between Electrical And Gravitational Forces

Electric Charges and Fields

2.1K Views

article

22.8 : Electric Field

Electric Charges and Fields

9.2K Views

article

22.9 : Electric Field of Two Equal and Opposite Charges

Electric Charges and Fields

5.1K Views

article

22.10 : Continuous Charge Distributions

Electric Charges and Fields

6.2K Views

article

22.11 : Electric Field of a Continuous Line Charge

Electric Charges and Fields

1.1K Views

article

22.12 : Electric Field of a Charged Disk

Electric Charges and Fields

1.7K Views

article

22.13 : Electric Field Lines

Electric Charges and Fields

6.4K Views

article

22.14 : Properties of Electric Field Lines

Electric Charges and Fields

7.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved