Zener diodes are specialized semiconductor devices designed to operate in the reverse breakdown region, where they allow current to flow into the cathode, making it positive relative to the anode. This reverse operation distinguishes Zener diodes from conventional diodes and enables their use in various applications, most notably as voltage regulators. One of the defining characteristics of Zener diodes is their nearly vertical I-V (current-voltage) characteristic curve above a certain threshold current, known as the knee current which allows the Zener diode to maintain a relatively stable voltage over a wide range of currents.

Manufacturers specify a Zener diode's maximum power dissipation and its Zener voltage at a specific test current. The Zener voltage, which can range from a few volts to several hundred volts, varies slightly with changes in current. This variance is due to the dynamic resistance of the diode, defined as the inverse of the slope of its I-V curve in the operational region. A low dynamic resistance is crucial for maintaining voltage stability across varying currents, enhancing the Zener diode's effectiveness in voltage regulation applications.

However, it's important to avoid operating Zener diodes in low-current regions where their dynamic resistance increases significantly, as this can lead to instability in the regulated voltage. The temperature dependence of the Zener voltage is another critical factor, with the temperature coefficient (expressed in millivolts per degree Celsius) indicating how the voltage changes with temperature. Lower-voltage Zener diodes generally exhibit negative temperature coefficients, whereas higher-voltage diodes have positive coefficients. For applications requiring a stable reference voltage with minimal temperature influence, a Zener diode with a positive temperature coefficient can be paired in series with a forward-conducting diode, effectively compensating for temperature variations.

Tags
Zener DiodeVoltage RegulatorReverse BreakdownI V CharacteristicKnee CurrentZener VoltageDynamic ResistanceTemperature CoefficientVoltage Stability

From Chapter 11:

article

Now Playing

11.4 : Zener Diodes

Diodes

285 Views

article

11.1 : The Ideal Diode

Diodes

488 Views

article

11.2 : Diode: Forward bias

Diodes

685 Views

article

11.3 : Diode: Reverse bias

Diodes

387 Views

article

11.5 : Modeling of Diode Forward Characteristics

Diodes

371 Views

article

11.6 : Small-signal Diode Model

Diodes

583 Views

article

11.7 : Modeling of Diode Reverse Characteristics

Diodes

186 Views

article

11.8 : Half wave rectifier

Diodes

451 Views

article

11.9 : Full wave rectifier

Diodes

459 Views

article

11.10 : Bridge rectifier

Diodes

348 Views

article

11.11 : Clipper Circuit

Diodes

256 Views

article

11.12 : Clamper Circuit

Diodes

294 Views

article

11.13 : Voltage Doubler Circuit

Diodes

304 Views

article

11.14 : Schottky Barrier Diode

Diodes

206 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved