A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
ITC is a powerful tool for studying the binding of a ligand to its host. In complex systems however, several models may fit the data equally well. The method described here provides a means to elucidate the appropriate binding model for complex systems and extract the corresponding thermodynamic parameters.
1. Preparing stock solutions
2. Preparing ITC samples
3. Setting up the syringe14
4. Loading the sample cell14
5. Loading injection syringe and initiating run14
6. Subsequent Runs
7. Data Analysis
8. Representative Results
Representative data are shown in Figure 1. The shapes of the isotherms should vary with concentration. Sharper transitions are expected for higher c-values (i.e. higher protein and ligand concentrations) (Figure 2).
In the case of AAC(6')-Ii, the two-site sequential model gives a better fit than one describing two sets of identical, independent sites with adjustable stoichiometries.
Figure 1. Isotherms produced by titration of AcCoA (3.86 mM) into AAC(6')-Ii (192 μM). A) Raw ITC trace. B) Integrated values used for determining binding parameters (squares) with a 2-site sequential fit (-).
Figure 2. ITC isotherms for AcCoA titrated into AAC(6')-Ii at varying concentrations. The experimental data (open circles) were fit to a 2-sets-of-sites independent model (dashed magenta) and a 2-site sequential model (solid blue). The 2-site sequentional model clearly gives better overall agreement. The concentrations employed were A) 6 μM, 0.25 mM, B) 12 μM, 0.25 mM, C) 24 μM, 0.5 mM, D) 48 μM, 1.0 mM, E) 96 μM, 1.9 mM, and F) 196 μM, 3.86 mM, for AAC(6')-Ii and AcCoA respectively.
This analytical portion of variable-c fitting has been previously described in detail10. Here we report practical aspects of collecting variable-c datasets suitable for this approach. It is essential that all protein and ligand samples are drawn from the same stock solutions. Therefore it is important that sufficient stock solution is prepared initially to complete the entire series of experiments. This ensures the ratio of AAC(6')-Ii and AcCoA is constant among all experiments, and reduces random fluctuation...
No conflicts of interest declared.
This work was supported by the Canadian Institutes of Health Research (CIHR), National Science and Engineering Research Council (NSERC), and a CIHR training grant scholarship (to L.F.). We thank Prof. Gerard D. Wright (McMaster University, Canada) for the AAC(6)-Ii expression plasmid.
Name | Company | Catalog Number | Comments |
Acetyl c–nzyme A (AcCoA) | Sigma-Aldrich | A2056 | |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) | Fisher Scientific | 7365-45-9 | |
ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | 431788 | |
Spectra/Por 2 Dialysis Tubing | Spectrum Labs | 132678 | |
Sterile Syringe Filter (0.2 μm) | VWR international | 281445-477 | |
Cellulos Nitrate Membrane Filters (0.45 μm) | Whatman, GE Healthcare | 7184-004 | |
VP-ITC | MicroCal | VP-ITC | Microcalorimeter used for measurements |
ThermoVac | MicroCal | USB Thermo Vac | Temperature Controlled Degassing Station |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved