A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a technique in which a section of the abdominal aorta from a mouse is transplanted orthotopically to just below the renal arteries in an allogeneic or syngeneic recipient. This technique can be useful in studies in which transplantation of large arteries of uniform size is deemed advantageous.
Vascular procedures involving anastomoses in the mouse are generally thought to be difficult and highly dependent on the skill of the individual surgeon. This is largely true, but there are a number of important principles that can reduce the difficulty of these procedures and enhance reproducibility. Orthotopic aortic transplantation is an excellent procedure in which to learn these principles because it involves only two end-to-end anastomoses, but requires good suturing technique and handling of the vessels for consistent success. This procedure begins with the procurement of a length of abdominal aorta from a donor animal, followed by division of the native aorta in the recipient. The procured aorta is then placed between the divided ends of the recipient aorta and sutured into place using end-to-end anastomoses. To accomplish this objective successfully requires a high degree of concentration, good tools, a steady hand, and an appreciation of how easily the vasculature of a mouse can be damaged, resulting in thrombosis. Learning these important principles is what occupies most of the beginner's time when learning microsurgery in small rodents. Throughout this protocol, we refer to these important points. This model can be used to study vascular disease in a variety of different experimental systems1-8. In the context shown here, it is most often used for the study of post-transplant vascular disease, a common long-term complication of solid organ transplantation in which intimal hyperplasia occurs within the allograft. The primary advantage of the model is that it facilitates quantitative morphometric analyses and the transplanted vessel lies contiguous to the endogenous vessel, which can serve as an additional control9. The technique shown here is most often used for mice weighing 18-25 grams. We have accumulated most of our experience using the C57BL/6J, BALB/cJ, and C3H/HeJ strains.
1. Presurgical Preparation
2. Donor Operation
3. Recipient Operation
Figure 1 shows an aortic graft. The white arrows denote the suture lines. A patent graft will show a visible pulse. Figure 2 indicates a typical experiment in which recipient survival was followed for a period of 56 days. One group consisted of wild-type (C57BL/6 x FVB) recipient mice transplanted with BALB/c aorta. The other group, designated "KO" consists of recipients (C57BL/6 x FVB) deficient in expression of heme oxygenase-1, which results in thrombosis of the grafts within 24 hr. N...
Mouse models of aortic transplantation provide a number of advantages because mice are very well defined immunogenetically9,12,13, and they can be easily manipulated to alter their expression of specific genes, if desired. As noted in the introduction, vascular surgery in the mouse is more difficult than most models because of the size of the vessels. Even the great arteries, such as the aorta are usually no more than 100-200 μm in inner diameter; so manipulating these vessels requires a significant amount ...
No conflicts of interest declared.
This work was funded by the core resource of the NIH P30 O'Brien center (DK 079337).
Name | Company | Catalog Number | Comments |
Vascular Clamps | Fine Science Tools | 00396-01 (Size B-1) | |
Dumont Forceps | Fine Science Tools | 11293-00 | |
10-0 Needled microsuture | AROSurgical | TK-107038 | |
Straight scissors | Roboz Surgical Instrument Co. | RS-5620 | |
Low temperature cauterizer | Beaver-Visitec International | 8441000 | |
Self retaining retractor | World Precision Instruments | 14240 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved