A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The Portable Chemical Sterilizer (PCS) is a revolutionary, energy-independent, almost waterless sterilization technology for Army medical units. The PCS generates chlorine dioxide from dry reagents mixed with water on-site, at-will, and at point-of-use (PoU) in a plastic suitcase. The Disinfectant-sprayer for Foods and ENvironmentally-friendly Sanitation (D-FENS) and the Disinfectant for ENvironmentally-friendly Decontamination, All-purpose (D-FEND ALL) produce aqueous chlorine dioxide in a collapsible spray bottle and other potential embodiments. These versatile decontamination technologies kill microbes in myriad diverse Dual-use applications for military and civilian consumers.
There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, ‘clean and green’ chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination6,15. Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments3. As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed “Bertha” in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft3), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves.
The PCS technology proceeds from where no commercial device existed previously and generates the disinfectant chlorine dioxide (ClO2) that has a proven ability to kill vegetative pathogens on fresh produce3,6,9-13,15 or to decontaminate bacterial spores.6,14,15,17 The PCS has been laboratory validated specifically to effectuate sterilization against live cultures of Geobacillus stearothermophilus (GS) spores (see related reference8) and spore bio-indicators of G. stearothermophilus and Bacillus atrophaeus (BA)6,15,16. The PCS has also been adapted to operate with less stringent conditions to ensure Food Safety by inactivating the vegetative pathogens Listeria monocytogenes and Escherichia coli on fresh produce, such as whole tomatoes, and to extend the shelf-life of fresh-cut produce, for example, by inactivating the polyphenoloxidase browning enzyme in sliced apples6,15. To generate chlorine dioxide, the PCS uses novel effector chemistry that proceeds via oxidation-reduction reactions at near-neutral pH, thus eliminating the use of acids and the inherent difficulties of shipping, storing, handling, and disposing acidic wastes in far-forward military deployments1,2,4,17. In addition to the military, the PCS can also be used by Homeland Security/Defense; during natural disasters (Superstorm Sandy, tsunamis, hurricane Katrina) that incapacitate access to power, potable water, and waste removal; on-site by emergency first-responders; and in community hospitals or schools during power outages (blackouts and brown-outs).
The Disinfectant-sprayer for Foods and ENvironmentally-friendly Sanitation (D-FENS) also uses effector chemistry (3 chemical components) and a 2-step mixing process (i. pre-concentration followed by ii. post-reaction dilution) to generate aqueous chlorine dioxide, primarily in a collapsible spray bottle for decontaminating surfaces of Army materiel, food handling equipment and field feeding equipment in Army field kitchens and sanitation centers and Navy Galleys, medical units, showers, and latrines anywhere large numbers of deployed personnel co-exist in close proximity5,6. Validation testing showed that D-FENS eliminates the pathogen Staphylococcus aureus, a common foodborne pathogen, on porous surfaces14. “D-FEND ALL” (Disinfectant for ENvironmentally-friendly Decontamination, All-purpose) provides a simpler (2 chemical components), more convenient (1-step mixing) alternative with unmatched versatility for producing aqueous chlorine dioxide to decontaminate bacterial spores on textiles, for surface disinfection to promote sanitation and hygiene, and to improve water quality and safety, with particular advantages for applications requiring the rapid production of large volumes of dilute chlorine dioxide solutions using small quantities of starting materials for applications in novel graywater recycling technologies designed to generate clean, potable water for Expeditionary Base Camps2.
A variety of mechanisms exist in accordance with the Federal Technology Transfer Act to facilitate the transfer of federal technologies to nonfederal entities as a way to encourage the development and commercialization of technologies for the material benefit of the nation. Accordingly, with their burgeoning potential for many military and civilian uses, the PCS, D-FENS, and D-FEND ALL technologies have been patented and transferred to industry for commercialization via Patent Licensing Agreements and Commercial Evaluation Licenses. A slow, controlled release version of D-FENS (called “D-FENS Lite”) was Technology Transferred to commercial industry for incorporation into packaging materials to extend the shelf-life of fresh berries, and the PCS has also been Technology Transferred to academia and other government agencies for comparative testing with other technologies, for research on Food Safety with fresh produce commodities, and for enhancing undergraduate science education. The Technology Transfer of the PCS and its chemistry led to a commercial product approved for bio-hood sterilization with improvements in time, cost, and environmental protection compared to conventional formaldehyde treatments.
1. The Portable Chemical Sterilizer (PCS)
2. “D-FENS”
3. The PCS for Fresh Fruits and Vegetables
The ability of reduced PCS treatments to kill harmful foodborne pathogens (E. coli and L. monocytogenes) on fresh produce was tested using a spot-inoculation method in which high levels of pathogens were spotted onto the exterior surfaces of tomato wedges.
4. “D-FEND ALL”
The easy-to-operate PCS was designed to achieve sterility by inactivating bacterial spore suspensions or bacterial spore bio-indicators in 30-minute treatments involving the controlled production of chlorine dioxide by unique effector chemistry. Specifically, microbiological validation studies verified that the PCS achieved sterility by inactivating bio-indicators containing spores (105 spores/ml) of either G. stearothermophilus or B. atrophaeus, that are intended to indicate sterilization by...
This foundational R&D has set new research and technical directions through collaborations with academia, other Government agencies, and industry that have led to the commercialization of novel, environmentally-friendly (“green”) technologies. Chlorine dioxide is the first method approved by the National Sanitation Foundation in 20 years for safer, faster, and more environmentally-friendly sterilization than conventional treatments. The PCS, D-FENS, and D-FEND ALL prototypes have been validated as bench-s...
We have no further disclosures.
The authors would like to acknowledge their gratitude to the U. S. Army Environmental Quality 6.1 Basic Research program, the US Army Institute of Surgical Research, and NSRDEC’s Continuous Product Improvement program and Expeditionary Base Camp TecD for funding this work. We are grateful to Adam Driks (Loyola University Medical Center) for the micrograph shown in Figure 6B.
Name | Company | Catalog Number | Comments |
Sodium chlorite | Sigma-Aldrich | 244155 | |
Sodium sulfite | Sigma-Aldrich | 239312 | |
Sodium ascorbate | Sigma-Aldrich | A7631 | |
Potassium phosphate | Sigma-Aldrich | P0662 | |
Dextrose | Fisher Scientific | D-16 | |
BT Sure biological indicator (steam) | Thermo Fisher Sci | AY759X3 | |
EZ Test (EtO) | SGM Biotech Inc | EZG/6 | |
Difco Hy-check | Becton-Dickinson/ Difco | 290002 | |
Tryptic Soy Agar | Difco | 236950 | |
Nutrient Agar | Difco | 213000 | |
Baird-Parker Agar | Difco | 276840 | |
Egg Yolk-Tellurite | Difco | 277910 | |
0.5% Yeast extract | Difco | 212750 | |
Bacto-Peptone | Difco | 211677 | |
Bacto-Tryptone | Difco | 211705 | |
Agar | Difco | 214010 | |
Soluble starch | Difco | 0178-17 | |
Lab Lemco Beef Extract | Oxoid | L29 | |
Masticator - Classic | IUL Instruments | Cat. No. 400 | |
Stomacher bags | Seward | Stomacher ‘400’ bags |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved