A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
C. elegans has emerged as a new genetic model to study host-pathogen interactions. Here we describe a protocol to infect C. elegans with Salmonella typhimurium coupled with the double-strand RNAi interference technique to examine the role of host genes in defense against Salmonella infection.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.
The free-living soil nematode Caenorhabditis elegans is a simple and genetically tractable model organism used to study many biological questions. C. elegans dominantly exists as self-fertilizing hermaphrodites. Males are spontaneously generated by non-disjunction of the X chromosome during gametogenesis1,2. In the presence of abundant food, C. elegans continuously develop through four larval stages to adult. Temperature also influences C. elegans development; faster development is observed at higher temperatures. In the laboratory, C. elegans is cultured at a standard temperature of 20 °C on agar plates with seeded bacterium Escherichia coli (strain OP50) as food1,2.
In the last decade, C. elegans has emerged as an invertebrate organism to study host-pathogen interactions3-5. In nature, C. elegans eats bacteria as its nutrient source1,2. Its normal bacterial laboratory food, OP50, can be easily substituted with other pathogens to examine the interactions between C. elegans and any chosen pathogen. Under these conditions, the intestine is the primary site of the infection. Indeed, a wide range of bacterial pathogens has been shown to lethally infect C. elegans3-5.
The gram-negative bacterium Salmonella is a gastrointestinal pathogen that causes human food-borne illness worldwide6,7. C. elegans is a good model host for Salmonella typhimurium as this bacterium replicates and exhibits persistent intestinal infections8-10. C. elegans has been used to identify both novel and previously known Salmonella virulence factors11. Interestingly, the C. elegans immune system successfully limits Salmonella replication. It has been reported previously that inhibition of autophagy genes renders increased Salmonella replication in C. elegans, resulting in early death of infected worms10. Macroautophagy (herein referred to as autophagy) is a dynamic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to the lysosome for degradation12. Autophagy has been reported to limit the Salmonella replication in C. elegans and in mammals10,13.
The C. elegans genome was the first multicellular eukaryotic genome sequenced; it is responsive to RNAi treatment14-16. Moreover, RNAi can be administrated effectively by subjecting worms to ingest bacteria containing the double-stranded RNA of the target gene, known as RNAi feeding16,17. Whole genome RNAi feeding libraries have been generated for genome-wide RNAi screening16,18. Herein, a Salmonella infection protocol is coupled with RNAi feeding to allow testing C. elegans genes of interest for their ability to protect against Salmonella infection.
1. XLD (Xylose Lysine Desoxycholate) Agar Plates
XLD agar is a selective growth medium for Salmonella, which appears as black colonies on XLD agar plates. However, if there are no concerns of contamination, a regular LB plate can be substituted.
2. Nematode Growth Medium (NGM) RNAi Feeding Plates
Preparation of C. elegans NGM plates has been described previously19. Here a procedure is briefly described to add the antibiotic ampicillin and the RNAi chemical inducer isopropyl β-D-1-thiogalactopyranoside (IPTG) into the NGM media to make the RNAi feeding plates.
3. Prepare RNAi-treated Animals for Infection
The essential autophagy gene bec-1 is used as an example to examine the function of a host gene in defense against Salmonella infection. The experimental procedures are illustrated in Figure 1 and Table 1. The protocol for preparing RNAi-treated animals for infection follows, with the day of each experimental step given in parentheses.
4. Prepare Salmonella for Infection
5. Infect RNAi-treated Worms with Salmonella
6. Survival Assay
At 20 °C, the median lifespan of wild type N2 worms is 17 days (Figure 2A and Table 2). Salmonella infection significantly decreases the median lifespan of N2 worms to 10.5 days (p = 0.0002, log-rank test) (Figure 2A).
If a C. elegans gene plays an important role in defense against Salmonella infection, it is predicted that its inhibition will impart susceptibility to Salmonella infection. In fact, comp...
C. elegans is a simple genetic model organism that eats bacteria as its nutrient source. Thus, it is easy to substitute its normal bacterial food with an intestinal pathogen to investigate the interactions between C. elegans and the chosen pathogen. Herein a protocol is described to combine Salmonella infection and C. elegans RNAi feeding treatment to examine the role of host genes in defense against Salmonella infection. Previous infection protocols expose C. elegans...
The authors declare that they have no competing financial interests.
We thank Dr. Diane Baronas-Lowell for critical reading of the manuscript. This work was supported by an FAU Charles E. Schmidt College of Science Seed Grant and an Aging Scholarship from the Ellison Medical Foundation to K.J.
Name | Company | Catalog Number | Comments |
LB Broth | Fisher | BP9723-500 | |
XLD agar | EMD Chemicals | 1.05287.0500 | |
Bacto Agar | Fisher | DF0140-01-0 | |
Peptone | Fisher | BP1420-500 | |
Sodium Chloride | Fisher | S671-500 | |
Calcium Chloride | Fisher | C69-500 | |
Magnesium Sulfate | Fisher | M65-500 | |
IPTG | Gold Biotechnology | 12481C50 | |
Cholesterol | Sigma | C8667-25G | |
Ampicillin | Fisher | BP1760-25 | |
Salmonella typhimurium | ATCC | ATCC14028 | |
Petri Dish 95 x 15 mm | Fisher | FB0875714G | |
Petri Dish 60 x 15 mm | Fisher | 08-757-13A | |
Falcon Serological pipet | Fisher | 13-668-2 | |
Falcon Express Pipet-Aid | Fisher | 13-675-42 | |
MaxQ6000 shaking incubator | Thermo Scientific | SHKE6000-7 | |
Incubator | Percival | I-36DL |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved