A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe how to implement a battery of behavioral tasks to examine the processing and integration of sensory stimuli in children with ASD. The goal is to characterize individual differences in temporal processing of simple auditory and visual stimuli and relate these to higher order perceptual skills like speech perception.
In addition to impairments in social communication and the presence of restricted interests and repetitive behaviors, deficits in sensory processing are now recognized as a core symptom in autism spectrum disorder (ASD). Our ability to perceive and interact with the external world is rooted in sensory processing. For example, listening to a conversation entails processing the auditory cues coming from the speaker (speech content, prosody, syntax) as well as the associated visual information (facial expressions, gestures). Collectively, the “integration” of these multisensory (i.e., combined audiovisual) pieces of information results in better comprehension. Such multisensory integration has been shown to be strongly dependent upon the temporal relationship of the paired stimuli. Thus, stimuli that occur in close temporal proximity are highly likely to result in behavioral and perceptual benefits – gains believed to be reflective of the perceptual system's judgment of the likelihood that these two stimuli came from the same source. Changes in this temporal integration are expected to strongly alter perceptual processes, and are likely to diminish the ability to accurately perceive and interact with our world. Here, a battery of tasks designed to characterize various aspects of sensory and multisensory temporal processing in children with ASD is described. In addition to its utility in autism, this battery has great potential for characterizing changes in sensory function in other clinical populations, as well as being used to examine changes in these processes across the lifespan.
Traditional neuroscience research has often approached understanding sensory perception by focusing on the individual sensory modalities. However, the environment consists of a wide array of sensory inputs that are integrated into a unified perceptual view of the world in a seemingly effortless manner. The fact that we exist in such a rich multisensory environment requires that we better understand the way in which the brain combines information across the different sensory systems. The need for this understanding is further amplified by the fact that the presence of multiple pieces of sensory information often results in substantial improvements in behavior and perception1-3. For example, there is a large improvement (up to 15 dB in the signal-to-noise ratio) in the ability to understand speech in a noisy environment if the observer can also see the speaker’s lip movements4-7.
One of the major factors that affects how the different sensory inputs are combined and integrated is their relative temporal proximity. If two sensory cues occur close together in time, a temporal structure that suggests common origin, they are highly likely to be integrated as evidenced by changes in behavior and perception8-12. One of the most powerful experimental tools for examining the impact of multisensory temporal structure on behavioral and perceptual responses is simultaneity judgment (SJ) tasks13-16. In such a task, multisensory (e.g., visual and auditory) stimuli are paired at various stimulus onset asynchronies (SOAs) ranging from objectively simultaneous (i.e., a temporal offset of 0 msec) to highly asynchronous (e.g., 400 msec). Participants are asked to judge the stimuli as simultaneous or not via a simple button press. In such a task, even when the visual and auditory stimuli are presented at SOAs of 100 msec or more, subjects report that the pair was simultaneous on a large proportion of trials. The window of time in which two inputs can occur and have a high probability of being perceived as occurring simultaneously is known as the temporal binding window (TBW)17-19.
The TBW is a highly ethological construct, in that it represents the statistical regularities of the world around us19. The “window” provides flexibility for the specification of events of common origin; one that allows for stimuli occurring at different distances with different propagation times (both physical and neural) to still be “bound” to one another. However, although the TBW is a probabilistic construct, changes that expand (or contract) the size of this window are likely to have cascading and potentially detrimental effects on perception20,21.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has been classically diagnosed on the basis of deficits in social communication and the presence of restricted interests and repetitive behaviors22. In addition, and as recently codified in the DSM-5, children with ASD frequently exhibit alterations in their responses to sensory stimuli. Rather than being restricted to a single sense, these deficits often encompass multiple senses including hearing, touch, balance, taste and vision. Along with such a “multisensory” presentation, individuals with ASD often exhibit deficits in the temporal realm. Collectively, these observations suggest that multisensory temporal function may be preferentially altered in autism17,23-25. Although concordant with the view of altered sensory function in ASD, changes in multisensory temporal function may also be an important contributor to the deficits in social communication in ASD, given the importance of rapid and accurate binding of multisensory stimuli for social and communication functions. Take as an example the speech exchange described above in which important information is contained in both the auditory and visual modalities. Indeed, these tasks have been used to demonstrate significant differences in the width of the multisensory TBW in high functioning children with autism26-28.
Due to its importance for normal perceptual function, its potential implications for higher order processes such as social communication (and other cognitive abilities), and its clinical relevance, a battery of tasks designed to assess multisensory temporal function in children with ASD is described.
Ethics statement: All subjects must provide informed consent prior to the experiment. The research described here has been approved by the Vanderbilt University Medical Center’s Institutional Review Board.
1. Experiment Set Up
2. Stimuli
3. Task Battery
NOTE: This task requires that all participants are able to understand and comply with verbal instructions from the experimenter.
4. Simultaneity Judgment (SJ)
NOTE: The SJ task is a two alternative forced-choice task (2-AFC) and consists of a visual ring and 1,000 Hz auditory tone presented at various SOAs (negative = auditory preceding visual, positive = visual proceeding auditory) presented in random order.
5. Temporal Order Judgment (TOJ)
NOTE: The auditory TOJ task is a 2-AFC task used to examine the temporal acuity of auditory processing. The visual TOJ task is a 2-AFC task used to examine the temporal acuity of visual processing. The multisensory TOJ task is a 2-AFC task used to examine temporal acuity across audition and vision. Each task takes approximately 10 - 15 min to complete.
6. McGurk Task
NOTE: The McGurk illusion consists of a video of the visual syllable “ga” paired with an auditory recording of the syllable “ba”. Many subjects will actually fuse the visual and auditory syllables and perceive this pair as the syllable “da” or “tha”32.
This task battery has proven very successful in measuring individual differences in temporal processing in individuals with and without ASD17,18,23,27. For the SJ task, plot the resulting data from each individual subject by first calculating the proportion of responses at each SOA that subject responded “synchronous” and then fitting the resulting response curve with a Gaussian curve. As illustrated in Figure 1A, there is a window of time in which visual-auditory stimuli pairs can...
The manuscript describes elements of a psychophysical task battery that are used to assess temporal processing and acuity in sensory and multisensory systems research. The battery has wide applicability for a number of populations and has been used by our laboratory in order to characterize audiovisual temporal performance in typical adults18, children10,39, and in children and adults with autism17,23. In addition, it has been used to examine how various facets of the battery relate to on...
The authors declare that they have no competing financial interests.
This research was supported by NIH R21CA183492, the Simons Foundation, the Wallace Research Foundation, and by CTSA award UL1TR000445 from the National Center for Advancing Translational Sciences.
Name | Company | Catalog Number | Comments |
Oscilloscope | |||
Photovoltaic cell | |||
Microphone | |||
Noise-cancelling headphones | |||
Chin rest | |||
Audiometer |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved