A subscription to JoVE is required to view this content. Sign in or start your free trial.
We adapted a permeable microporous membrane insert to mimic the tumor microenvironment (TME). The model consists of a mixed cell culture, allows simplified generation of highly enriched individual cell populations without using fluorescent tagging or cell sorting, and permits studying intercellular communication within the TME under normal or stress conditions.
Understanding the early heterotypic interactions between cancer cells and the surrounding non-cancerous stroma is important in elucidating the events leading to stromal activation and establishment of the tumor microenvironment (TME). Several in vitro and in vivo models of the TME have been developed; however, in general these models do not readily permit isolation of individual cell populations, under non-perturbing conditions, for further study. To circumvent this difficulty, we have employed an in vitro TME model using a cell growth substrate consisting of a permeable microporous membrane insert that permits simple generation of highly enriched cell populations grown intimately, yet separately, on either side of the insert's membrane for extended co-culture times. Through use of this model, we are capable of generating greatly enriched cancer-associated fibroblast (CAF) populations from normal diploid human fibroblasts following co-culture (120 hr) with highly metastatic human breast carcinoma cells, without the use of fluorescent tagging and/or cell sorting. Additionally, by modulating the pore-size of the insert, we can control for the mode of intercellular communication (e.g., gap-junction communication, secreted factors) between the two heterotypic cell populations, which permits investigation of the mechanisms underlying the development of the TME, including the role of gap-junction permeability. This model serves as a valuable tool in enhancing our understanding of the initial events leading to cancer-stroma initiation, the early evolution of the TME, and the modulating effect of the stroma on the responses of cancer cells to therapeutic agents.
The tumor microenvironment (TME) is a highly complex system comprised of carcinoma cells that co-exist and evolve alongside host stroma. This stromal component typically consists of fibroblasts, myofibroblasts, endothelial cells, various immune components, as well as an extracellular matrix1. A significant constituent, often the majority of this stroma, are activated fibroblasts, frequently referred to as cancer-associated fibroblasts or carcinoma-associated fibroblasts (CAF)2,3. Unlike normal, non-activated fibroblasts, CAFs contribute to tumor initiation, progression, angiogenesis, invasion, metastasis, and recurrence4-11 in a wide v....
1. Preparation of Culture Media and Cells
Here we adapted a permeable microporous membrane insert to develop an in vitro heterotypic cell co-culture system that mimics the in vivo tumor microenvironment (Figure 1). This system allows for two different cell populations to be grown on either side of the insert's porous-membrane for extended periods of time (up to 120 hr, in our use). Importantly the system is capable of maintaining the purity of the cell populations, as determined by plating G.......
The protocol described here is a simple, adaptable in vitro procedure (Figure 1) that utilizes a permeable microporous membrane insert to generate highly enriched individual cell populations from a co-culture of heterotypic cells. Significantly, the model is suitable for investigating various modes of intercellular communication. The critical steps include selecting the appropriate pore-size insert for specific experimental interest(s), seeding the first cell population on the bottom side of the.......
The authors declare that they have no competing or conflicting interests.
This research was supported by grants from the New Jersey Commission on Cancer Research (Pre-Doctoral Fellowship DFHS13PPCO17), the National Institutes of Health (CA049062), and the National Aeronautics and Space Administration (NNX15AD62G).
....Name | Company | Catalog Number | Comments |
For Cell Culture | |||
AG01522 (i.e., AG1522) human diploid fibroblast | Coriell | 107661 | Passage 8-13 |
MDA-MB-231-luc-D3H1 breast adenocarcinoma cell line | PerkinElmer | 119261 | Parental line: ATCC (#HTB-26) |
MDA-MB-231/GFP breast adenocarcinoma cell line | Cell Biolabs | AKR-201 | |
Eagle's minimal essential medium (MEM) | Corning Cellgro | 15-010-CV | |
Fetal Bovine Serum (FBS), Qualified | Sigma | F6178-500mL | |
Corning Glutagro Supplement (200mM L-alanyl-L-glutamine) | Corning Cellgro | 25-015-Cl | |
Penicillin Streptomycin Solution, 100X | Corning Cellgro | 30-002-Cl | |
Transwell Insert (i.e., permeable microporous membrane insert) (0.4 μm pore) | Costar | 3450 | |
Transwell Insert (i.e., permeable microporous membrane insert) (1 μm pore) | Greiner bio-one | 657610 | |
Transwell Insert (i.e., permeable microporous membrane insert) (3 μm pore) | Costar | 3452 | |
6-well Culture Plate | Greiner Bio-One Cellstar | 657160-01 | |
75 cm2 cell culture flask | CellStar | 658 170 | |
Phosphate-Buffered Saline (PBS), 1X | Corning Cellgro | 21-040-CV | without calcium & magnesium |
0.25% (vol/vol) Trypsin, 2.21 mM EDTA, 1X | Corning Cellgro | 25-053-Cl | |
15 mL Centrifuge Tube | CellTreat | 229411 | |
35 x 10 mm Cell Culture Dish | Greiner bio-one | 627 160 | |
Name | Company | Catalog Number | Comments |
For Immunofluorescent Microscopy | |||
Mouse anti-Caveolin 1 | BD Transduction Laboratories | 610406 | In situ Immunofluorescence - 1:5000 |
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate | ThermoFisher Scientific | A-11029 | In situ Immunofluorescence - 1:2000 |
Bovine Serum Albumin - Fraction V | Rockland | BSA-50 | Immunoglobulin and protease free |
16% (wt/vol) Formaldehyde Solution | ThermoFisher Scientific | 28908 | Dilute to 4% with 1X PBS |
Premium Cover Glass (22x22 mm No.1) | Fisher | 12548B | |
Triton X-100 | Sigma | T8787-50ML | |
SlowFade Gold antifade reagent with DAPI | Invitrogen | S36938 | |
Name | Company | Catalog Number | Comments |
For Flow Cytometric Analysis | |||
Calcein, AM | Molecular Probes | C3100MP | |
Hanks' Balanced Salt Solution (HBSS) | Gibco | 14025-076 | |
Name | Company | Catalog Number | Comments |
For Western Blot Analysis | |||
Mouse anti-Caveolin 1 | BD Transduction Laboratories | 610406 | Western Blot - 1:10000 |
Tween-20 | BioRad | 170-6531 | |
Nitrocellulose Membrane (0.2 μm) | BioRad | 162-0112 | |
Western Lightning Plus-ECL | PerkinElmer | NEL104001EA | |
BioRad DC Protein Assay | BioRad | 500-0116 | |
Sodium dodecyl sulfate (SDS) | BioRad | 161-0302 | |
Sodium deoxycholate monohydrate (DOC) | Sigma | D5670 | |
IGEPAL CA-630 (NP40) | Sigma | I8896 | |
30% Acrylamide/Bis Solution, 37.5:1 | BioRad | 161-0158 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved