Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We adapted a permeable microporous membrane insert to mimic the tumor microenvironment (TME). The model consists of a mixed cell culture, allows simplified generation of highly enriched individual cell populations without using fluorescent tagging or cell sorting, and permits studying intercellular communication within the TME under normal or stress conditions.

Abstract

Understanding the early heterotypic interactions between cancer cells and the surrounding non-cancerous stroma is important in elucidating the events leading to stromal activation and establishment of the tumor microenvironment (TME). Several in vitro and in vivo models of the TME have been developed; however, in general these models do not readily permit isolation of individual cell populations, under non-perturbing conditions, for further study. To circumvent this difficulty, we have employed an in vitro TME model using a cell growth substrate consisting of a permeable microporous membrane insert that permits simple generation of highly enriched cell populations grown intimately, yet separately, on either side of the insert's membrane for extended co-culture times. Through use of this model, we are capable of generating greatly enriched cancer-associated fibroblast (CAF) populations from normal diploid human fibroblasts following co-culture (120 hr) with highly metastatic human breast carcinoma cells, without the use of fluorescent tagging and/or cell sorting. Additionally, by modulating the pore-size of the insert, we can control for the mode of intercellular communication (e.g., gap-junction communication, secreted factors) between the two heterotypic cell populations, which permits investigation of the mechanisms underlying the development of the TME, including the role of gap-junction permeability. This model serves as a valuable tool in enhancing our understanding of the initial events leading to cancer-stroma initiation, the early evolution of the TME, and the modulating effect of the stroma on the responses of cancer cells to therapeutic agents.

Introduction

The tumor microenvironment (TME) is a highly complex system comprised of carcinoma cells that co-exist and evolve alongside host stroma. This stromal component typically consists of fibroblasts, myofibroblasts, endothelial cells, various immune components, as well as an extracellular matrix1. A significant constituent, often the majority of this stroma, are activated fibroblasts, frequently referred to as cancer-associated fibroblasts or carcinoma-associated fibroblasts (CAF)2,3. Unlike normal, non-activated fibroblasts, CAFs contribute to tumor initiation, progression, angiogenesis, invasion, metastasis, and recurrence4-11 in a wide v....

Protocol

1. Preparation of Culture Media and Cells

  1. Prepare 500 ml of Eagle's minimum essential medium supplemented with 12.5% (vol/vol) heat-inactivated fetal bovine serum (FBS), 2 mM L-alanyl-L-glutamine, and 100 units of penicillin and 100 µg of streptomycin per ml.
    NOTE: The growth medium and supplement(s) can be easily exchanged for the growth requirements of other cell strains or cell lines.
  2. Prepare 70 µl of cell culture medium for each insert (6-well format insert): Eagle's min.......

Representative Results

Here we adapted a permeable microporous membrane insert to develop an in vitro heterotypic cell co-culture system that mimics the in vivo tumor microenvironment (Figure 1). This system allows for two different cell populations to be grown on either side of the insert's porous-membrane for extended periods of time (up to 120 hr, in our use). Importantly the system is capable of maintaining the purity of the cell populations, as determined by plating G.......

Discussion

The protocol described here is a simple, adaptable in vitro procedure (Figure 1) that utilizes a permeable microporous membrane insert to generate highly enriched individual cell populations from a co-culture of heterotypic cells. Significantly, the model is suitable for investigating various modes of intercellular communication. The critical steps include selecting the appropriate pore-size insert for specific experimental interest(s), seeding the first cell population on the bottom side of the.......

Disclosures

The authors declare that they have no competing or conflicting interests.

Acknowledgements

This research was supported by grants from the New Jersey Commission on Cancer Research (Pre-Doctoral Fellowship DFHS13PPCO17), the National Institutes of Health (CA049062), and the National Aeronautics and Space Administration (NNX15AD62G).

....

Materials

NameCompanyCatalog NumberComments
For Cell Culture
AG01522 (i.e., AG1522) human diploid fibroblastCoriell107661Passage 8-13
MDA-MB-231-luc-D3H1 breast adenocarcinoma cell linePerkinElmer119261Parental line: ATCC (#HTB-26)
MDA-MB-231/GFP breast adenocarcinoma cell lineCell BiolabsAKR-201
Eagle's minimal essential medium (MEM)Corning Cellgro15-010-CV
Fetal Bovine Serum (FBS), QualifiedSigmaF6178-500mL
Corning Glutagro Supplement (200mM L-alanyl-L-glutamine)Corning Cellgro25-015-Cl
Penicillin Streptomycin Solution, 100XCorning Cellgro30-002-Cl
Transwell Insert (i.e., permeable microporous membrane insert) (0.4 μm pore)Costar3450
Transwell Insert (i.e., permeable microporous membrane insert) (1 μm pore)Greiner bio-one657610
Transwell Insert (i.e., permeable microporous membrane insert) (3 μm pore)Costar3452
6-well Culture PlateGreiner Bio-One Cellstar657160-01
75 cm2 cell culture flaskCellStar658 170
Phosphate-Buffered Saline (PBS), 1XCorning Cellgro21-040-CVwithout calcium & magnesium
0.25% (vol/vol) Trypsin, 2.21 mM EDTA, 1XCorning Cellgro25-053-Cl
15 mL Centrifuge TubeCellTreat229411
35 x 10 mm Cell Culture DishGreiner bio-one627 160
NameCompanyCatalog NumberComments
For Immunofluorescent Microscopy
Mouse anti-Caveolin 1BD Transduction Laboratories610406In situ Immunofluorescence - 1:5000
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugateThermoFisher ScientificA-11029In situ Immunofluorescence - 1:2000
Bovine Serum Albumin - Fraction VRocklandBSA-50Immunoglobulin and protease free
16% (wt/vol) Formaldehyde SolutionThermoFisher Scientific28908Dilute to 4% with 1X PBS
Premium Cover Glass (22x22 mm No.1)Fisher12548B
Triton X-100SigmaT8787-50ML
SlowFade Gold antifade reagent with DAPIInvitrogenS36938
NameCompanyCatalog NumberComments
For Flow Cytometric Analysis
Calcein, AMMolecular ProbesC3100MP
Hanks' Balanced Salt Solution (HBSS)Gibco14025-076
NameCompanyCatalog NumberComments
For Western Blot Analysis
Mouse anti-Caveolin 1BD Transduction Laboratories610406Western Blot - 1:10000
Tween-20BioRad170-6531
Nitrocellulose Membrane (0.2 μm)BioRad162-0112
Western Lightning Plus-ECLPerkinElmerNEL104001EA
BioRad DC Protein AssayBioRad500-0116
Sodium dodecyl sulfate (SDS)BioRad161-0302
Sodium deoxycholate monohydrate (DOC)SigmaD5670
IGEPAL CA-630 (NP40)SigmaI8896
30% Acrylamide/Bis Solution, 37.5:1BioRad161-0158

References

  1. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell. 100 (1), 57-70 (2000).
  2. Olive, K. P., Jacobetz, M. A., et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cance....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Tumor MicroenvironmentIn Vitro Coculture ModelIntercellular CommunicationCancer associated FibroblastsTherapeutic AgentsCell PopulationsCell CultureCell DissociationCell SeedingCell Incubation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved