A subscription to JoVE is required to view this content. Sign in or start your free trial.
A protocol for the production, purification, and use of enzyme packaged outer membrane vesicles (OMV) providing for enhanced enzyme stability for implementation across diverse applications is presented.
An increasing interest in applying synthetic biology techniques to program outer membrane vesicles (OMV) are leading to some very interesting and unique applications for OMV where traditional nanoparticles are proving too difficult to synthesize. To date, all Gram-negative bacteria have been shown to produce OMV demonstrating packaging of a variety of cargo that includes small molecules, peptides, proteins and genetic material. Based on their diverse cargo, OMV are implicated in many biological processes ranging from cell-cell communication to gene transfer and delivery of virulence factors depending upon which bacteria are producing the OMV. Only recently have bacterial OMV become accessible for use across a wide range of applications through the development of techniques to control and direct packaging of recombinant proteins into OMV. This protocol describes a method for the production, purification, and use of enzyme packaged OMV providing for improved overall production of recombinant enzyme, increased vesiculation, and enhanced enzyme stability. Successful utilization of this protocol will result in the creation of a bacterial strain that simultaneously produces a recombinant protein and directs it for OMV encapsulation through creating a synthetic linkage between the recombinant protein and an outer membrane anchor protein. This protocol also details methods for isolating OMV from bacterial cultures as well as proper handling techniques and things to consider when adapting this protocol for use for other unique applications such as: pharmaceutical drug delivery, medical diagnostics, and environmental remediation.
Presented here is a method for the design, production, and purification of enzyme-loaded bacterial outer membrane vesicles (OMV). OMV are small, primarily unilamellar, proteoliposomes that range in size from 30-200 nm1,2. All Gram-negative and Gram-positive bacteria that have been studied to date have demonstrated release of either OMV or extracellular vesicles (EV) from their surface3,4. The precise mechanism by which OMV are produced have yet to be fully elucidated due to the diverse bacterial populations that secrete them as well as the varying functions that they serve. OMV have been shown to transport a wide range of cargo from small molecules, peptides, and proteins to genetic material serving a variety of complex signaling, gene translocation, and virulence functions5,6.
The exact mechanisms of OMV biogenesis are not well characterized, and appear to differ between bacterial species. Despite this fact, we have developed a method for enhancing the packaging efficiency of a recombinant protein into OMV by creating a synthetic linkage between a protein of interest and a highly abundant protein endogenous to the bacterial outer membrane and subsequent OMV. In the absence of a synthetic linkage, or artificially incorporated affinity, between the recombinantly expressed protein and the OMV the observed packaging efficiency is very low7. This result is to be expected as incorporation of the proteins within the OMV either occurs through random chance encapsulation at the precise moment of OMV formation at the bacterial surface or through directed packaging by mechanisms that are not well understood. Some success has been observed in packaging proteins simply through over expression within the periplasmic space which relies on random chance encapsulation but effective packaging is highly protein dependent with some proteins packaging at high efficiency compared to others that do not package at all8-10. By utilizing common synthetic biology techniques we sought to engineer Escherichia coli (E. coli) to simultaneously produce, package and secrete an active enzyme of interest into OMV that circumvents current knowledge limitations regarding how OMV are formed and how cargo is selected by the bacteria for packaging.
For the purposes of this application a split protein bioconjugation system was selected as the synthetic linkage of choice to facilitate directional packaging into the OMV. As the name suggests a split protein bioconjugation system is comprised of two complementary subunit domains that interact with one another. The split protein domains selected for the purposes of this protocol are referred to as the SpyCatcher (SC) and SpyTag (ST) domain and are derived from the Streptococcus pyogenes fibronectin-binding protein (FbaB)11. This split protein system is unusual in that when the two subunits are within proximity an isopeptide bond spontaneously forms between the proximal aspartic acid and lysine amino acid residues creating a covalent linkage. Isopeptide bond formation does not require the addition of chaperone proteins, catalytic enzymes, or cofactors and can readily occur at room temperature (RT) and over a wide range of physiologically relevant conditions12.
As a proof of concept, phosphotriesterase (PTE) (EC 3.1.8.1) from Brevundimonas diminuta was selected to be packaged into E. coli derived OMV13. PTE contains a binuclear Zn/Zn active site and has the ability to break down organophosphates through a hydrolysis reaction converting aryldialkylphosphates into dialkylphosphates and aryl alcohols14. Exposure to organophosphates impairs proper neurotransmitter function through inhibiting the hydrolysis of acetylcholine by acetylcholinesterase at neuromuscular junctions making organophosphate derived compounds extremely dangerous15. Prolonged or significant exposure to organophosphates commonly results in uncontrollable convulsions and typically causes death via asphyxiation. While PTE exhibits the highest catalytic activity toward paraoxon, a very potent insecticide, it is also capable of hydrolyzing a broad range of other pesticides and V/G type chemical nerve agents16. To facilitate OMV packaging, a bacterial plasmid was designed that encodes a gene construct that contains an inducible promoter, a periplasmic localization sequence, and a short multiple cloning site upstream of the SC gene sequence. Insertion of the PTE gene between the leader and SC sequence allowed for creation of a genetic switch that targets the PTE-SC fusion protein to the periplasmic space for OMV packaging. While the efforts described here focus on PTE, the enzyme gene is interchangeable and could readily be replaced with another gene sequence to facilitate packaging of an alternate enzyme or protein.
As the second part of the synthetic linkage, an abundant outer membrane protein (OmpA) is chosen to present the ST peptide sequence. While the choice of anchor protein can vary, it is essential that the protein has a permissive domain that presents within the periplasmic space, tolerates the fusion construct without inducing cytotoxicity, is known to be present in OMV, and does not aggregate when it is recombinantly produced. OmpA is a 37.2 kDa transmembrane porin protein that is known to be highly expressed in the bacterial outer membrane and subsequent OMV17. It is implicated in the transport of small molecules, <2 nm in size, across the bacterial membrane18. Native OmpA has two structurally unique domains, a transmembrane beta barrel motif and a periplasmically soluble C-terminal portion known to interact with the peptidoglycan19. In the mutant OmpA-ST fusion designed here the C-terminal portion of OmpA was deleted and the ST was fused to the periplasmically facing N- or C-termini. Deleting the periplasmic portion of OmpA decreases the number of interactions between the outer membrane and the peptidoglycan resulting in membrane destabilization leading to hyper-vesiculation7. Genomic OmpA was maintained in addition to the recombinantly expressed OmpA-ST construct to mitigate gross membrane destabilization.
1. Preparation of Plasmids
2. Generation of an OMV Packaging E. coli Culture
3. OMV Production
4. OMV Purification
5. OMV Characterization
6. Verification of Enzyme Packaging
7. OMV Storage
Simultaneous expression of two recombinant proteins, as is required for the OMV packaging strategy detailed in this protocol, can be accomplished through a number of different avenues. Here, a two vector system was utilized with compatible origins of replication and separate inducible gene cassettes. For the expression of the PTE-SC construct a commercial plasmid backbone (pACY184) was engineered to include an arabinose inducible gene cassette and a twin arginine periplasmic localization ...
This protocol functions to demonstrate a representative directed packaging technique in which an enzyme of interest is produced and packaged into OMV by E. coli. As with many complex techniques there are multiple areas in which the protocol can be modified to accommodate for use in different unique applications, some of which are detailed below. While the mechanism of OMV packaging and enzyme encapsulation can be adapted to specific needs there are several steps within this protocol which are critical to its suc...
The authors have nothing to disclose.
This research was funded by the Office of Naval Research through Core funds provided to the Naval Research Laboratory.
Name | Company | Catalog Number | Comments |
IPTG | Any | Always prepare fresh or aliquot and freeze. | |
L-arabinose | Any | Can be prepared ahead of time and stored at 4C. | |
Ampicillin | Any | Add immediately prior to use after media cools sufficiently from being autoclaved. | |
Chloramphenicol | Any | Add immediately prior to use after media cools sufficiently from being autoclaved. | |
TB/LB Culture Media | Any | Other growth medias will likely work similarly. | |
Triton X-100 | Any | One of many potential suitable surfactants. | |
Baffled culture flasks | Any | The baffles promote higher levels of aeration. | |
CHES | Fisher Bioreagents | BP318-100 | Optimal buffer used for paraoxon degredation (pH > 8). |
Paraoxon | Chem Service | N-12816 | Very toxic substance to be handled carefully and disposed of properly. |
Syringe Filter 0.45 µm | Thermo Scientific | 60183-221 (30 mm) | Filter diameter will depend on volume of sample. Low protein binding membrane is critical. |
Shaker incubator | New Brunswick | Excella E24 | Precise temperature and mixing is essential for reproducable bacterial growth. |
Sorvall Culture Centrifuge | Thermo Scientific | RC 5B PLUS | Large volume (500 mL) culture centrifuge capable of 7,000 x g. |
Sorvall Ultracentrifuge | Thermo Scientific | WX Ultra 90 | Capable of centrifugal forces ≥150,000 x g. |
Ultracentrifuge Rotor | Thermo Scientific | AH-629 | Ensure the proper rotor and tubes are used and that everything is properly balanced. |
Ultra-Clear Ultracentrifuge Tubes (25 x 89 mm) | Beckman Coulter | 344058 | Ensure no stress fractures are present prior to use and that tubes are presicely balanced. |
Spectrophotometer | Tecan | Infinite M1000 | Necessary for enzyme kinetic assays. |
DLS / particle tracking | NanoSight | LM10 | Necessary for OMV size distribution and concentration determination. |
BL21(DE3) | NEB | Suitable bacterial expression strain. | |
pET22 | EMD Millipore | 69744-3 | Other plasmids can be used in place of these. |
pACYC184 | NEB | Other plasmids can be used in place of these. | |
Gel Extraction Kit | Qiagen | 28704 | Example kit. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved