A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Detailed and generalized protocols are presented for the synthesis and subsequent purification of four palladium N-heterocyclic carbene complexes from benzimidazolium salts. The complexes were tested for catalytic activity in arylation and Suzuki-Miyaura reactions. For each reaction investigated, at least one of the four complexes successfully catalyzed the reaction.
Detailed and generalized protocols are presented for the synthesis and subsequent purification of four palladium N-heterocyclic carbene complexes from benzimidazolium salts. Detailed and generalized protocols are also presented for testing the catalytic activity of such complexes in arylation and Suzuki-Miyaura cross-coupling reactions. Representative results are shown for the catalytic activity of the four complexes in arylation and Suzuki-Miyaura type reactions. For each of the reactions investigated, at least one of the four complexes successfully catalyzed the reaction, qualifying them as promising candidates for catalysis of many carbon-carbon bond-forming reactions. The protocols presented are general enough to be adapted for the synthesis, purification and catalytic activity testing of new palladium N-heterocyclic carbene complexes.
N-heterocyclic carbenes (NHCs) have attracted much attention, particularly for their ability to catalyze various important reactions such as metathesis, creation of furan, polymerization, hydrosilylation, hydrogenation, arylation, Suzuki-Miyaura cross-coupling and Mizoroki-Heck cross-coupling1,2,3,4,5,6,7,8,9,10,11. NHCs can be coupled with metals; such metal-NHC complexes have been extensively used in transition metal-catalyzed reactions as ancillary ligands and organocatalysts12,13,14,15,16. Generally, they are extraordinarily stable against air, moisture and heat as a consequence of the high dissociation energies of metal-carbon coordination bonds17.
Here, the protocols for the previously-shown synthesis and purification of four benzimidazolium salts (compounds 1-4) and their palladium NHC complexes (compounds 5-8, respectively) are detailed18. The salts and complexes were previously characterized using various techniques18. Since similar compounds are used for catalysis of arylation and Suzuki-Miyaura cross-coupling reactions9,10,11, the protocols for testing the catalytic activity of the complexes in arylation and Suzuki-Miyaura reactions are also detailed. Importantly, the protocols for synthesizing, purifying and testing the catalytic activity of the complexes are presented general enough to allow easy adaptation to new palladium NHC complexes.
Caution: Many volatile solvents are used as part of the protocols detailed below so carry out all experiments in a working fume hood. Wear appropriate personal protective equipment throughout and consult the MSDS of each reagent before use; herein, brief information has been provided about the hazardous reagents and steps.
1. Synthesis and purification of benzimidazolium salts (compounds 1-4)
2. Synthesis and purification of palladium NHC complexes (compounds 5-8)
3. Catalytic activity of the complexes (5-8) in arylation reactions
4. Catalytic activity of the complexes (5-8) in Suzuki-Miyaura cross-coupling reactions
Benzimidazolium salts (1-4) (Figure 1) were synthesized in anhydrous DMF using N-alkylbenzimidazoles and various alkyl halides, then purified and characterized as reported before18,24. They were white or cream-colored solids and had yields ranging from 62% to 97%. Palladium NHC complexes (5-8) (Figur...
The protocols for the synthesis and purification of four benzimidazolium salts and subsequently their palladium NHC complexes were deliberately presented in utmost detail to help young scientists or those new to the field master them. With this same goal in mind, the protocols for testing the catalytic activity of the four complexes in arylation and Suzuki-Miyaura reactions were also presented in utmost detail. Furthermore, we have attempted to present the protocols in as general a form as possible to allow others to eas...
The authors have nothing to disclose.
We acknowledge the financial support by Faculty of Pharmacy (The University of Sydney), Erciyes University Research Fund and TUBITAK (1059B141400496). We thank Tim Harland (The University of Sydney) for editing the video.
Name | Company | Catalog Number | Comments |
1-chloro-4-nitrobenzene | Sigma-Aldrich (Interlab A.S., USA) | ||
2,5-dimethoxyphenylboronic acid | Sigma-Aldrich (Interlab A.S., USA) | ||
2-n-butylfuran | Sigma-Aldrich (Interlab A.S., USA) | ||
2-n-butylthiophene | Sigma-Aldrich (Interlab A.S., USA) | ||
3-chloropyridine | Merck (Darmstadt, Germany) | ||
4-bromoacetophenone | Merck (Darmstadt, Germany) | ||
4-bromoanisole | Sigma-Aldrich (Interlab A.S., USA) | ||
4-chlorotoluene | Sigma-Aldrich (Interlab A.S., USA) | ||
4-methoxy-1-chlorobenzene | Merck (Darmstadt, Germany) | ||
4-tert-butylphenylboronic acid | Sigma-Aldrich (Interlab A.S., USA) | ||
Benzimidazole | Merck (Darmstadt, Germany) | ||
Bromobenzene | Merck (Darmstadt, Germany) | ||
Celite | Merck (Darmstadt, Germany) | ||
Dichloromethane | Merck (Darmstadt, Germany) | ||
Diethyl ether | Sigma-Aldrich (Interlab A.S., USA) | ||
Ethyl acetate | Sigma-Aldrich (Interlab A.S., USA) | ||
Ethyl alcohol | Merck (Darmstadt, Germany) | ||
Hexane | Merck (Darmstadt, Germany) | ||
Magnesium sulfate | Scharlau (Barcelona, Spain) | ||
N,N-dimethylacetamide | Merck (Darmstadt, Germany) | ||
N,N-dimethylformamide | Merck (Darmstadt, Germany) | ||
Palladium chloride | Merck (Darmstadt, Germany) | ||
Phenylboronic acid | Sigma-Aldrich (Interlab A.S., USA) | ||
Potassium acetate | Merck (Darmstadt, Germany) | ||
Potassium carbonate | Scharlau (Barcelona, Spain) | ||
Potassium hydroxide | Merck (Darmstadt, Germany) | ||
Silica gel | Merck (Darmstadt, Germany) | ||
Sodium tert-butoxide | Merck (Darmstadt, Germany) | ||
Thianaphthene-2-boronic acid | Sigma-Aldrich (Interlab A.S., USA) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved