A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we describe a 4-stage protocol to differentiate human embryonic stem cells to NKX6-1+ pancreatic progenitors in vitro. This protocol can be applied to a variety of human pluripotent stem cell lines.
Pluripotent stem cells have the ability to self renew and differentiate to multiple lineages, making them an attractive source for the generation of pancreatic progenitor cells that can be used for the study of and future treatment of diabetes. This article outlines a four-stage differentiation protocol designed to generate pancreatic progenitor cells from human embryonic stem cells (hESCs). This protocol can be applied to a number of human pluripotent stem cell (hPSC) lines. The approach taken to generate pancreatic progenitor cells is to differentiate hESCs to accurately model key stages of pancreatic development. This begins with the induction of the definitive endoderm, which is achieved by culturing the cells in the presence of Activin A, basic Fibroblast Growth Factor (bFGF) and CHIR990210. Further differentiation and patterning with Fibroblast Growth Factor 10 (FGF10) and Dorsomorphin generates cells resembling the posterior foregut. The addition of Retinoic Acid, NOGGIN, SANT-1 and FGF10 differentiates posterior foregut cells into cells characteristic of pancreatic endoderm. Finally, the combination of Epidermal Growth Factor (EGF), Nicotinamide and NOGGIN leads to the efficient generation of PDX1+/NKX6-1+ cells. Flow cytometry is performed to confirm the expression of specific markers at key stages of pancreatic development. The PDX1+/NKX6-1+ pancreatic progenitors at the end of stage 4 are capable of generating mature β cells upon transplantation into immunodeficient mice and can be further differentiated to generate insulin-producing cells in vitro. Thus, the efficient generation of PDX1+/NKX6-1+ pancreatic progenitors, as demonstrated in this protocol, is of great importance as it provides a platform to study human pancreatic development in vitro and provides a source of cells with the potential of differentiating to β cells that could eventually be used for the treatment of diabetes.
The prevalence of diabetes is increasing and according to the Canadian Diabetes Association, it is estimated that over 11 million individuals in Canada are diabetic or prediabetic, with 5-10% of these individuals having type 1 diabetes (T1D)1. T1D is an autoimmune disease that is caused by the destruction of the insulin producing β cells that are located within the Islets of Langerhans. Currently, individuals living with T1D require exogenous sources of insulin2. Despite advances in insulin therapy, T1D patients continue to have a difficult time regulating their blood glucose levels and continue to suffer both hypo- and hyperglycemia. A promising form of treatment to restore normoglycemia in T1D is the use of human embryonic stem cells (hESCs), which could be used to generate an unlimited supply of insulin producing β cells both in vivo and in vitro3,4,5,6,7. Differentiating hESCs to β-like cells could make it possible to study diabetes in vitro, allowing for the identification of new therapeutic targets for type 2 diabetes and provide cells for transplantation into T1D patients.
The most successful attempt at generating insulin producing cells from hESCs in vitro is to recapitulate the embryonic events that occur during pancreatic development4,5. This involves the manipulation of distinct signaling pathways to accurately model key stages of the developing pancreas. Pancreatic development begins with the induction of the definitive endoderm, which is characterized by the expression of CXCR4 and CD117 (c-KIT)8,9. Precise regulation of definitive endoderm organization is required for the formation of the gut tube, which then undergoes anterior-to-posterior and ventral-dorsal patterning. The dorsal and ventral pancreatic buds emerge from the region of the posterior foregut that expresses the pancreatic and duodenal homeobox gene (Pdx1), which is necessary for pancreatic development10. The dorsal and ventral buds fuse to form the pancreas, which then undergoes extensive epithelial remodeling and expansion11. Commitment to the endocrine and exocrine lineage is accompanied by the generation of multipotent progenitor cells (MPCs) that express, among others, the transcription factors Pdx1, Nkx6.1 and Ptf1a12,13. MPCs that will become endocrine and ductal cells continue to express Nkx6-1 while decreasing Ptf1a expression. Contrary to this, exocrine lineage cells will lose expression of Nkx6-1 and maintain Ptf1a expression12.
The transcription factor Nkx6-1 has a key role in pancreatic development, particularly during the differentiation of endocrine progenitor cells to β cells. As previously described, deletion of Nkx6-1 results in impaired formation of β cells during pancreatic development14. Therefore, generating insulin-producing β cells both in vitro and in vivo requires the efficient induction of Nkx6-1.
We recently developed a protocol to efficiently generate PDX1+/NKX6-1+ pancreatic progenitors from hPSCs. These hPSC-derived pancreatic progenitors generate mature β cells upon transplantation into immunodeficient mice3. The differentiation protocol can be divided into 4 stages characteristic of: 1) definitive endoderm induction, 2) posterior foregut patterning, 3) pancreatic specification and 4) NKX6-1 induction. Here we provide a detailed description of each step of the directed differentiation.
1. Preparation of Solutions and Media
NOTE: Prepare all media for cell culture in a sterile environment. Media has to be made and used immediately. Reagent details are provided in the Materials Table.
2. HESC Differentiation
NOTE: HESC are thawed, passaged and expanded on irradiated mouse embryonic fibroblasts in the presence of a KOSR-based media supplemented with bFGF16. HESCs are ready for differentiation when the cells reach 80-95% confluency. At this time the colonies should be large with defined borders and a 'domelike' structure (Figure 1A). All cell culture is performed in flat-bottom, tissue culture treated plates coated with 0.1% gelatin. Typically, the cells are grown in 6 or 12-well plates, in media volumes of 2 ml or 1 ml, respectively.
3. Harvesting Cells for Flow Cytometry Analysis
4. Staining for Flow Cytometry
Efficient generation of pancreatic progenitors relies on the proper growth and maintenance of undifferentiated cells followed by the precise addition of specific signaling molecules during the differentiation protocol, as illustrated in the schematic in Figure 1A. On day 0, undifferentiated cells should be 80-95% confluent and colonies should have defined edges (Figure 1A). During Stage 1, the media will likely appear cloudy since cell death is quite comm...
Successfully generating NKX6-1+ pancreatic progenitors from hPSCs in vitro relies on the use of high quality cultures of hPSCs and directed differentiation involving the precise regulation of specific signaling pathways that govern key developmental stages during pancreatic development. Although this protocol can be used to induce robust expression of NKX6-1 across a variety of hPSC lines as previously shown3, to ensure efficient NKX6-1 generation the following considerations s...
The authors have nothing to disclose.
This manuscript was supported by funding from the Toronto General and Western Foundation and the Banting & Best Diabetes Centre-University Health Network Graduate Award.
Name | Company | Catalog Number | Comments |
Media and cytokines | |||
1-Thioglycerol (MTG) | Sigma | M6145 | |
Activin A | R&D | 338-AC/CF | |
Ascorbic Acid | Sigma | A4544 | |
B-27 Supplement | Life Technologies | 12587-010 | |
BD Cytofix/Cytoperm Buffer | BD Bioscience | 554722 | |
BD Perm/Wash buffer, 1x | BD Bioscience | 554723 | |
bFGF | R&D | 233-FB | |
CHIR990210 | Tocris | 4423a | |
Dulbecco’s Modified Eagle Medium (DMEM) | Life Technologies | 11995 | |
DNase I | VWR | 80510-412 | |
Dorsomorphin | Sigma | P5499 | |
EGF | R&D | 236-EG | |
Fetal Bovine Serum (FBS) | Wisent | 88150 | |
FGF10 | R&D | 345-FG | |
Gelatin from porcine skin | Sigma | G1890 | |
Glutamine | Life Technologies | 25030 | |
Nicotinamide | Sigma | NO636 | |
NOGGIN | R&D | 3344-NG | |
Penicillin/Streptomycin | Life Technologies | 15070-063 | |
Retinoic acid | Sigma | R2625 | |
RPMI Medium 1640 | Life Technologies | 11875 | |
SANT-1 | Tocris | 1974 | |
TrypLE Express Enzyme (1x), phenol red | Life Technologies | 12605-010 | |
Name | Company | Catalogue Number | Comments |
Antibodies for flow cytometry (working dilutions) | |||
CD117 PE (1:100) | Life Technologies | CD11705 | |
CXCR4 APC (1:50) | BD Bioscience | 551966 | |
Donkey Anti-Mouse IgG (H+L), Alexa Fluor 647 conjugate (1:400) | Life Technologies | A-31571 | |
Donkey Anti-Goat IgG (H+L), Alexa Fluor 488 (1:400) | Jackson ImmunoResearch Laboratories Inc. | 705-546-147 | |
Isotype Control Mouse IgG | Jackson ImmunoResearch Laboratories Inc. | 015-000-003 | |
Isotype Control Goat IgG | R&D | AB-108-C | |
NKX6-1 (1:2,000) | DSHB | F55A10 | |
PDX1 (1:100) | R&D | AF2419 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved