A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A protocol for fabricating porous, nanostructured yttria-stabilized-zirconia (YSZ) scaffolds at temperatures between 1,000 °C and 1,400 °C is presented.
We demonstrate a method for the high temperature fabrication of porous, nanostructured yttria-stabilized-zirconia (YSZ, 8 mol% yttria - 92 mol% zirconia) scaffolds with tunable specific surface areas up to 80 m2·g-1. An aqueous solution of a zirconium salt, yttrium salt, and glucose is mixed with propylene oxide (PO) to form a gel. The gel is dried under ambient conditions to form a xerogel. The xerogel is pressed into pellets and then sintered in an argon atmosphere. During sintering, a YSZ ceramic phase forms and the organic components decompose, leaving behind amorphous carbon. The carbon formed in situ serves as a hard template, preserving a high surface area YSZ nanomorphology at sintering temperature. The carbon is subsequently removed by oxidation in air at low temperature, resulting in a porous, nanostructured YSZ scaffold. The concentration of the carbon template and the final scaffold surface area can be systematically tuned by varying the glucose concentration in the gel synthesis. The carbon template concentration was quantified using thermogravimetric analysis (TGA), the surface area and pore size distribution was determined by physical adsorption measurements, and the morphology was characterized using scanning electron microscopy (SEM). Phase purity and crystallite size was determined using X-ray diffraction (XRD). This fabrication approach provides a novel, flexible platform for realizing unprecedented scaffold surface areas and nanomorphologies for ceramic-based electrochemical energy conversion applications, e.g. solid oxide fuel cell (SOFC) electrodes.
The solid oxide fuel cell (SOFC) holds great promise as an alternative energy conversion technology for the efficient generation of clean electrical power.1 Considerable progress has been made in the research and development of this technology; however, improvements in electrode performance are still needed to achieve reliable commercialization. The electrode often comprises a porous ceramic scaffold with electrocatalytic particles decorated on the scaffold surface. A large body of research has focused on increasing the surface area of the electrocatalytic particles to increase performance,2,3,4,5,6,7,8 but there is very little research on increasing the scaffold surface area. Increasing the scaffold surface area is challenging because they are sintered at high temperatures, 1,100 °C to 1,500 °C.
Scaffolds processed by traditional sintering typically have a specific surface area of 0.1-1 m2·g-1.8,9,10,11 There are a few reports on increasing the scaffold surface area. In one case, the surface area of a traditionally sintered scaffold was enhanced by dissolution and precipitation of the scaffold surface using hydrofluoric acid, achieving a specific surface area of 2 m2·g-1.12 In another, high temperatures were avoided altogether by using pulsed laser deposition, achieving a specific surface area of 20 m2·g-1.13 The rationale behind the development of our technique was to create a low cost fabrication process that provides unprecedented scaffold surface areas and uses traditional sintering temperatures so that the process can be adopted easily. With the technique reported here, scaffold surface areas up to 80 m2·g-1 have been demonstrated while being processed at traditional sintering temperatures.14
Our research is primarily motivated by SOFC electrode engineering, but the technique is more broadly applicable to other fields and applications. Generally, the in situ carbon templating method is a flexible approach that can produce nanostructured, high surface area mixed-metal ceramic materials in the powder or porous scaffold form. It is flexible in that the mixed-metal ceramic composition, surface area, porosity, and pore size can all be tuned systematically. High temperatures are often needed to form the desired phase in mixed-metal ceramics, and this approach preserves ceramic nanomorphology while allowing one to choose essentially any processing temperature.
This method involves the synthesis of a hybrid inorganic-organic propylene-oxide-based gel, with a well define stoichiometry of metal ions and ratio of inorganic to organic content. The gel is dried under ambient conditions to form a xerogel. The xerogel is sintered in an argon atmosphere at the desired temperature. Upon heating, the organic component decomposes leaving behind a carbon template in situ, which remains for the duration of sintering. The carbon template is subsequently removed by low temperature oxidation in air, resulting in a nanostructured, high surface area ceramic.
1. Preparing Xerogel Pellets
2. Sintering the Xerogel Pellet in an Inert Atmosphere
3. Determining Carbon Template Concentration
4. Preparing High Surface Area YSZ Scaffold by Carbon Template Removal
Phase purity was confirmed by X-ray diffraction (XRD) as previously reported by Cottam et al.14 YSZ scaffold specific surface area as a function of carbon template concentration is shown in Figure 1. The concentration is shown as the volume percent of total solids in the sintered xerogel pellet. The carbon template concentration systematically increases with increasing glucose concentration in the gel formulation. As shown in Figur...
With this in situ carbon templating approach, one can create and preserve nanomorphology in mixed-metal-oxides at traditional ceramic scaffold sintering temperatures. The resulting surface areas are up to 80 times higher than traditionally sintered scaffolds and up to 4 times higher than scaffolds fabricated by complex deposition techniques.14 The propylene oxide-glucose gel system is highly flexible for tuning the concentration of the carbon template, allowing one to systematically contr...
We have nothing to disclose.
This work was supported by the Wake Forest Chemistry Department and the Wake Forest Center for Energy, Environment, and Sustainability (CEES). We thank Charles Mooney and the Analytical Instrumentation Facility of the North Carolina State University for assistance with SEM imaging.
Name | Company | Catalog Number | Comments |
Zirconium(IV) chloride, 99.5+% | Alfa Aesar | 12104 | Air sensitive |
Yttium(III) nitrate hexadydrate, 99.9% | Alfa Aesar | 12898 | Oxidizer |
D+ Glucose Anhydrous, ≥99.5% | US Biological Life Sciences | G3050 | |
(±)-Propylene Oxide, ≥99% | Sigma Aldrich | 110205 | Extremely flammable |
Ethanol 200 Proof | Decon Laboratories, Inc. | 2716GEA | |
Argon, 99.997% | Airgas | AR 300 | Industrial grade |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved