A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes a simple method for isolating and culturing primary mouse cerebral granule neurons (CGNs) from 6-7 day old pups, efficient transduction of CGNs for loss and gain of function studies, and modelling NMDA-induced neuronal excitotoxicity, low-potassium-induced cell death, DNA-damage, and oxidative stress using the same culture model.
Cerebellar granule neurons (CGNs) are a commonly used neuronal model, forming an abundant homogeneous population in the cerebellum. In light of their post-natal development, abundance, and accessibility, CGNs are an ideal model to study neuronal processes, including neuronal development, neuronal migration, and physiological neuronal activity stimulation. In addition, CGN cultures provide an excellent model for studying different modes of cell death including excitotoxicity and apoptosis. Within a week in culture, CGNs express N-methyl-D-aspartate (NMDA) receptors, a specific ionotropic glutamate receptor with many critical functions in neuronal health and disease. The addition of low concentrations of NMDA in conjunction with membrane depolarization to rodent primary CGN cultures has been used to model physiological neuronal activity stimulation while the addition of high concentrations of NMDA can be employed to model excitotoxic neuronal injury. Here, a method of isolation and culturing of CGNs from 6 day old pups as well as genetic manipulation of CGNs by adenoviruses and lentiviruses are described. We also present optimized protocols on how to stimulate NMDA-induced excitotoxicity, low-potassium-induced apoptosis, oxidative stress and DNA damage following transduction of these neurons.
Cerebellar granule neurons (CGNs) are well characterized in culture and have served as an effective model to study neuronal death and development 1,2,3,4,5,6. The early expression of N-methyl-D-aspartate (NMDA) receptors in CGN cultures in vitro makes them an attractive model to study NMDA-induced signalling. Activation of these receptors with NMDA in conjunction with membrane depolarization is used to model physiological neuronal activity stimulation, and has allowed for research into the mechanisms of synaptic plasticity 7,8. On the contrary, over-stimulation of these receptors by NMDA ligand can be used to model excitotoxicity, a major mechanism of neuronal loss in acute brain damage and neurodegenerative diseases 9. One mechanism for the induction of excitotoxicity is through ATP starvation with reduced oxygen, as seen with acute neuronal injury. This results in membrane depolarization and elevated levels of glutamate release at the synapse. The subsequent overstimulation of the NMDA receptor by elevated glutamate results in excessive Ca2+ influx via these receptors, which in turn activates several pathways including Ca2+-activated proteases, phospholipases, and endonucleases, resulting in the uncontrolled degradation of critical cellular components and cell death. Additionally, high intracellular Ca2+ leads to the generation of oxygen free radicals and mitochondrial damage 10,11.
While the majority of neuronal loss following NMDA-induced neuronal excitotoxicity is due to calcium influx and is Bax/Bak independent, other mechanisms of cell death cannot be excluded from this model. The appearance of both necrotic and apoptotic like cell death due to excitotoxicity is partially due to the generation of reactive oxygen species (ROS) and DNA damage caused by high intracellular Ca2+ levels 12. DNA damage results in neuronal death through apoptotic mechanisms, being correlated with hallmarks of apoptotic cell death, such as the appearance of chromatin masses and apoptotic bodies. Induction of apoptosis is mediated through the release of cytochrome c from the mitochondria, and has been shown to be dependent on Bax/Bak oligomerization 13. Bax/Bak oligomerization promotes pore formation in the outer mitochondrial membrane, resulting in cytochrome c release and the activation of pro-apoptotic regulators as seen with mild ischemic injury 14.
Generation of ROS is a significant issue in the brain due to the low endogenous levels of antioxidants, coupled with the large oxygen requirement for neuronal functioning 15. When exposed to an ischemic event, nitric oxide synthase is upregulated , producing nitric oxide and increasing reactive oxygen species 14. The increased concentration of oxygen radicals can result in DNA damage and indirectly cause energy starvation. High levels of DNA double-stranded breaks are remedied by the activation of poly ADP-ribose polymerase-1 (PARP-1), an eukaryotic chromatin-bound protein responsible for catalyzing the transfer of ADP-ribose units from NAD+, a process integral to DNA repair 16. However, with excessive damage due to oxidative stress, PARP-1 activation can cause energy starvation due to the increased drain on NAD+, a necessary substrate for ATP production through oxidative phosphorylation. Ultimately, oxidative stress will trigger apoptosis in a Bax/Bak dependant manner leading to mitochondrial cytochrome c release, and has been shown to induce mitochondrial remodelling in CGNs 17.
Finally, changes in concentration of potassium chloride (KCl) in CGN cultures can be used to model low potassium/depolarization mediated apoptosis 18,19,20. When exposed to low levels of K+, CGNs undergo distinct physiological changes, resulting in reductions of both mitochondrial respiration and glycolysis, attributed to decreased cellular demand 21, as well as reduction in levels of nuclear factor-κB (NFκB) which regulates activities including inflammation and synaptic transmission 22. This model is of particular interest for the study of cell death during neuronal development. The low K+ environment more closely resembles physiological conditions, and causes hallmarks of cell death seen during neuronal development 23.
In summary, CGNs provide a longstanding model to investigate the underlying molecular mechanisms of neuronal death and degeneration. The following protocol will allow isolation and culturing of CGNs, expression or repression of a particular genetic pathway using viruses and the induction of neuronal death via different mechanisms representing neuronal injury and degeneration.
This protocol is based on modifications of procedures that have been described previously 18,24,25,26,27. This protocol is approved by the Animal Care Committee at McGill University.
1. Experimental Preparation
NOTE: The following stock solutions can be prepared and maintained until use.
2. Brain Extraction and Isolation of Cerebellum
3. Mouse Cerebellar Granule Neuron Isolation and Culturing
4. Lentivirus Packaging, Purification and Titration
NOTE: The protocol for the packaging, concentration, purification and titration of lentivirus has previously been described in detail without the use of a kit 28, including alternative methods for titration, such as flow cytometry 29. Here we briefly present the protocol used in our lab for the production of lentivirus to study neuronal injury using speedy virus purification solution and a qPCR lentiviral titration kit.
5. Modeling Neuronal Injury
With careful dissection, the intact brain should be removed with minimal damage as seen in Figure 1A-B. Effort should be taken to minimize damage to the brain during removal, particularly damage to the cerebellum. Damaging the cerebellum makes for more difficult identification and complete removal of the meninges, and increases the likelihood of contamination of the neuronal culture. Once the meninges have been removed, the cerebellum can be ...
Here we provide a simple method for the culturing of primary mouse cerebellar granule neurons (CGNs), loss and gain of function studies, and modeling different mechanisms of cell death. Several factors affect the reproducibility of the results using this procedure which require close monitoring. These include the purity of the culture including the elimination of glial cells in the culture, the confluence of the culture, and maintaining healthy cells. Introducing variability in these factors can bias the results and chal...
The authors have nothing to disclose.
This work is supported by Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research grants to A.J.-A.
Name | Company | Catalog Number | Comments |
qPCR lentivitral titration kit | ABM | #LV900 | |
speedy virus purification solution | ABM | #LV999 | |
pCMV-dR8.2 | Addgene | #8455 | |
pCMV-VS.VG | Addgene | #8454 | |
Distilled water | Gibco | #15230162 | |
200 mM L-Glutamine | Gibco | #25030081 | |
35 mm Nunc culture dishes | Gibco | #174913 | |
PowerUP SYBR green master mix | life technologies | #A25742 | |
BSA V Solution | Sigma Aldrich | #A-8412 | |
CaCl2 • 2H2O | Sigma Aldrich | #C-7902 | |
Camptothecin | Sigma Aldrich | #C-9911 | |
Chicken Egg White Trypsin Inhibitor | Sigma Aldrich | #10109878001 | |
Cytosine beta-D-Arabino Furanoside | Sigma Aldrich | #C-1768 | |
D-(+)-Glucose | Sigma Aldrich | #G-7528 | |
DNase1 | Sigma Aldrich | #11284932001 | |
Eagle-minimal essential medium | Sigma Aldrich | #M-2279 | |
Glycine | Sigma Aldrich | #G-5417 | |
Heat inactivated dialyzed Fetal Bovine Serum | Sigma Aldrich | #F-0392 | |
Hepes Buffer | Sigma Aldrich | #H-0887 | |
Hydrogen peroxide | Sigma Aldrich | #216763 | |
50 mg/mL Gentamycin | Sigma Aldrich | #G-1397 | |
MgSO4 | Sigma Aldrich | #M-2643 | |
N-Methyl-D-aspartic acid | Sigma Aldrich | #M-3262 | |
Phenol Red Solution | Sigma Aldrich | #P-0290 | |
Trypsin | Sigma Aldrich | #T-4549 | |
Lipofectamine 3000 | Thermo Fisher Scientific | L3000-008 | |
p3000 enhancer reagent | Thermo Fisher Scientific | L3000-008 | |
Opti-MEM I Reduced Serum Medium | Thermo Fisher Scientific | 31985070 | |
KCl | VWR | #CABDH9258 | |
NaCl | VWR | #CABDH9286 | |
NaH2PO4H2O | VWR | #CABDH9298 | |
Poly D-lysine | VWR | #89134-858 | |
DMEM | Wisent | #319-005-CL | |
FBS | Wisent | #080-450 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved