A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Change blindness is a phenomenon of visual attention, whereby changes to a visual display go unnoticed under certain specific circumstances. This protocol describes a variation on the flicker paradigm for investigating change blindness that is appropriate and effective for research with pigeons.
Change blindness is a phenomenon of visual attention, whereby changes to a visual display go unnoticed under certain specific circumstances. While many laboratory procedures have been developed that produce change blindness in humans, the flicker paradigm has emerged as a particularly effective method. In the flicker paradigm, two visual displays are presented in alternation with one another. If successive displays are separated by a short inter-stimulus interval (ISI), change detection is impaired. The simplicity of the procedure and the clear, performance-based operational definition of change blindness make the flicker paradigm well-suited to comparative research using nonhuman animals. Indeed, a variant has been developed that can be implemented in operant chambers to study change blindness in pigeons. Results indicate that pigeons, like humans, are worse at detecting the location of a change if two consecutive displays are separated in time by a blank ISI. Furthermore, pigeons' change detection is consistent with an active, location-by-location search process that requires selective attention. The flicker task thus has the potential to contribute to investigations of the dynamics of pigeons' selective spatial attention in comparison to humans. It also illustrates that the phenomenon of change blindness is not exclusive to humans' visual perception, but may instead be a general consequence of selective attention. Finally, while the useful aspects of attention are widely appreciated and understood, it is also important to acknowledge that they may be accompanied by specific imperfections such as change blindness, and that these imperfections have consequences across a wide range of contexts.
Cognitive psychology has repeatedly demonstrated striking and often surprising imperfections in our own cognitive processes. Some of the more notable examples include but are not limited to false memories1, suboptimal decision heuristics2, and faulty statistical reasoning3. A more recent addition to this list is the phenomenon of change blindness. Change blindness is a consistent failure of attention, in which one fails to notice even prominent changes to one's environment. In one demonstration4, experimenters had a confederate approach individuals to request directions. During their conversation, workers carrying a door passed between the two, briefly interrupting visual contact and providing an opportunity to swap out the confederate for a different person. After this surreptitious exchange, most individuals failed to notice that their conversation partner was no longer the same person. This failure is surprising because moment-to-moment changes would seem to be signals of potentially important events that ought to draw our attention.
In order to better understand how and why change blindness occurs, researchers have brought it into the lab and developed several ingenious procedures5,6,7,8 for studying it under more controlled conditions. One particularly successful approach has been dubbed "the flicker task"9. In this procedure, the experimenters edited photographs by removing a feature, and then presented the images to participants, rapidly alternating between the original and modified versions. Participants quickly spotted the differences. However, if a brief blank field was inserted between consecutive images (producing a flickering display for which the procedure is named) change detection was much more difficult, resulting in worse accuracy and slower response times. This procedure is appealing because it provides a precise measure of change blindness, and it is easy to manipulate specific aspects of the display such as the size, salience, or timing of a change.
The flicker paradigm has proven to be a powerful tool for learning about perception and attention in humans10. The effect is surprisingly powerful and persistent. Change blindness can occur for changes to the only object in a simple animation11, and when looking directly at a change location12. Even experience with change blindness and awareness of the phenomenon does not eliminate it13. Furthermore, change blindness is quite diverse, and can be induced by a number of different events, such as eye saccades5, mudsplashes14, motion picture cuts7, or visual occlusion4. A parallel phenomenon occurs in auditory15 and tactile16 modalities, indicating that it may not be exclusive to visual stimuli and may be a more general phenomenon of attention.
Humans of course, are not the only animal that makes use of attention. Pigeons, for example, show many of the same attentional abilities that humans do. They can select specific features for preferential processing (as when they use a search image to find specific food targets)17,18. They can direct attention toward specific regions or spatial locations19. They can shift their attention between hierarchical levels of organization20,21. They can also divide attention between different aspects of a stimulus display22,23. It seems then, that pigeons possess many of the same abilities that make attention useful for humans. If change blindness has to do with some of the inherent limitations of attention, we might expect to see a parallel change blindness effect in pigeons (and perhaps other animals). Furthermore, there have recently been multiple successful studies of change detection conducted using pigeons, implementing widely varying methods24,25,26,27,28.
Recent research29,30,31,32 has adapted the flicker paradigm to investigate change blindness in pigeons, and has produced results that parallel human change blindness. The current report describes a simple method for implementing this procedure in an operant chamber. As with human versions of the task, it is easy to isolate and manipulate specific aspects of stimulus presentation in order to investigate their influence over change detection and change blindness. Thus, the procedure should constitute a valuable tool for research on the limitations of avian attention, and the extent to which they are similar to the limitations of human attention.
The procedure described here is in accordance with the Office of Laboratory Animal Welfare and with US Public Health Service Policy on Humane Care and Use of Laboratory Animals, and was approved by Whitman College's Institutional Animal Care and Use Committee.
1. Reduce Pigeons' Weights
NOTE: Pigeons' weights are reduced to 80 - 85% of their free-feeding weight33 to ensure that the birds are healthy and adequately motivated to work for food.
2. Train Pigeons to Peck Stimuli Displayed on the Response Keys in the Operant Chamber and to Eat Grain from the Food Hopper
NOTE: Training and experimental sessions require precise computer control, with temporal resolution of less than 1 ms. Use a flexible programming language (see Table of Materials) to control operant chambers via an I/O relay.
3. Train Pigeons to Search for and Peck Changes Presented on Response Keys
4. Present Novel Transfer Trials Within Daily Sessions
The primary result of interest is the difference in accuracy between trials with and without an ISI. In particular, the operational definition of change blindness in the flicker paradigm is significantly reduced change-detection accuracy on trials with an ISI relative to trials without an ISI. This effect can be seen in Figure 3, which shows previously published data29. In that experiment, pigeons detected changes to stimuli consisting...
The method presented here is inspired by the so-called "flicker paradigm" commonly used by cognitive psychologists to study change blindness in humans9. In this human research, change blindness is operationally defined as the impairment in change detection produced by the presence of an ISI that interrupts transitions between stimulus displays. The same is true for the pigeon implementation described here. Furthermore, humans tend to approach the flicker task using a serial search strategy...
The author has nothing to disclose.
The author extends thanks to members of the Whitman College Comparative Psychology Lab for their help in data collection, including Mark Arand, Michael Barker, Eva Davis, Kuba Jeffers, Brett Lambert, Tara Mah, Theo Pratt, Tvan Trinh, Lyla Wadia, and Patricia Xi.
Name | Company | Catalog Number | Comments |
Small Environment Cublicle | BRS/LVE | SEC-002 | |
Pigeon Intelligence Panel | BRS/LVE | PIP-016 | |
Grain Feeder | BRS/LVE | GFM-001 | |
Pigeon Pecking Key | BRS/LVE | PPK-001 | |
Stimulus projector | BRS/LVE | IC-901 | |
LED Lamp | Martek Industries, Cherry Hill NJ | 1820 | |
I/O module | Acces IO | USB-IDIO-8 | |
Personal Computer | Dell | Optiplex 3040 | |
Visual C++ | Microsoft | ||
White Carneau pigeons | Double-T Farm |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved