A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of the protocol is to build an inflammatory human gingiva model in vitro. This tissue model co-cultivates three types of human cells, HaCaT keratinocytes, gingival fibroblasts, and THP-1 macrophages, under three-dimensional conditions. This model can be applied to investigating periodontal diseases, such as gingivitis and periodontitis.
Periodontal diseases (such as gingivitis and periodontitis) are the leading causes of tooth loss in adults. Inflammation in gingiva is the fundamental physiopathology of periodontal diseases. Current experimental models of periodontal diseases have been established in various types of animals. However, the physiopathology of animal models is different from that of humans, making it difficult to analyze cellular and molecular mechanisms and evaluate new medicines for periodontal diseases. Here, we present a detailed protocol for reconstructing human inflammatory tissue equivalents of gingiva (iGTE) in vitro. We first build human tissue equivalents of gingiva (GTE) by utilizing two types of human cells, including human gingival fibroblasts (HGF) and human skin epidermal keratinocytes (HaCaT), under three-dimensional conditions. We create a wound model by using a tissue puncher to punch a hole in the GTE. Next, human THP-1 monocytes mixed with collagen gel are injected into the hole in the GTE. By adimistration of 10 ng/mL phorbol 12-myristate 13-acetate (PMA) for 72 h, THP-1 cells differentiated into macrophages to form inflammatory foci in GTE (iGTE) (IGTE also can be stumilated with 2 µg/mL of lipopolysaccharides (LPS) for 48 h to initiate inflammation). IGTE is the first in vitro model of inflammatory gingiva using human cells with a three-dimensional architecture. IGTE reflects major pathological changes (immunocytes activition, intracellular interactions among fibryoblasts, epithelial cells, monocytes and macrophages) in periodontal diseases. GTE, wounded GTE, and iGTE can be used as versatile tools to study wound healing, tissue regeneration, inflammation, cell-cell interaction, and screen potential medicines for periodontal diseases.
Periodontal diseases are the leading cause of tooth loss in adults. Gingivitis and periodontitis are the most common periodontal diseases. Both present biofilm-mediated acute or chronic inflammatory changes in gingiva. Gingivitis is characterized by acute inflammation, whereas periodontitis usually presents as chronic inflammation. On the histological level,bacterial components trigger the activation of immune cells, such as macrophages, lymphocytes, plasma cells, and mast cells1,2. These immune cells, especially macrophages, interact with local cells (including gingival epithelial cells, fibroblasts, endothelial cells, and osteoblasts) resulting in inflammatory lesions in periodontal tissue3,4. Experimental models of periodontal diseases have been established in various types of animals, such as rats, hamsters, rabbits, ferrets, canines, and primates. However, the physiopathology of animal models is different from that of humans, making it difficult to analyze cellular and molecular mechanisms and evaluate new medicines of periodontal diseases5. Co-cultivation of periodontal bacteria and monolayer human oral epithelial cells has been used to investigate the mechanism of periodontal infections6. Nevertheless, monolayer cultures of oral cells lack the three-dimensional (3D) cellular architecture of intact tissue; therefore, they cannot mimic the in vitro situation.
Here, 3D inflammatory human tissue equivalents of gingiva (iGTE) are established to represent periodontal diseases in vitro. This 3D model of periodontal diseases occupies an intermediate position between monolayer cell cultures and animal models. Three types of human cells, including HaCaT keratinocytes, gingival fibroblasts, and THP-1 macrophages, are co-cultivated on collagen gel, and stimulated by inflammatory initiators to build iGTE. IGTE closely simulates the in vivo conditions of cell differentiation, cell-cell interaction, and macrophage activation in gingiva. This model has many possible applications for drug screening and testing new pharmacological approaches in periodontal diseases, as well as for analyzing cellular and molecular mechanisms in wound healing, inflammation, and tissue regeneration.
This protocol is designed to create human gingival tissue equivalents, gingival wound models, and gingivitis models. Human skin epidermal keratinocytes (HaCaT) were kindly provided from Professor Norbert E. Fusenig of Deutsches Krebsforschungszentrum (Heidelberg, Germany)7. Human gingival fibroblasts (HGFs) were isolated from gingival tissues according to the previously published protocols8. Informed consent was obtained beforehand, and the study was approved according to the guidelines set by the Committee of Ethics, the Nippon Dental University School of Life Dentistry at Tokyo (Authorization Number: NDU-T2012-35). Protocol steps 1–3 should be performed in a cell culture hood.
1. Preparation of 3D Human Tissue Equivalents of Gingiva (GTE) (Figure 1A)
2. Preparation of Wounded GTE (Figure 1B)
3. Preparation of Inflammatory GTE (iGTE) (Figure 1B)
4. Fixation and Whole Mount Immunostaining of GTE and iGTE Cultures
HaCaT cells displayed typical keratinocyte morphology under phase-contrast microscopic observation (Figure 2A). Scanner electron microscopic (SEM) images showed that HaCaT cell surfaces were covered by many microvilli. Intercellular connections between HaCaT cells were mediated by membrane processes (Figure 2B). HaCaT cells expressed gingival epithelium marker K8/1814, indicating that HaCaT cells are suita...
This protocol is based on methods of creating gingival tissue equivalents and subcutaneous adipose-tissue equivalents described by previous reports8,21,22. Although this is a simple and easy method, some steps require special attention. For example, the collagen mixture should be kept on ice until use to avoid gel formation in the solution. When adding the collagen mixture into the culture insert, make sure the solution was inje...
The authors declare no conflict of interest.
This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (26861689 and 17K11813). The authors would like to thank Mr. Nathaniel Green for proofreading.
Name | Company | Catalog Number | Comments |
Collagen type I-A | Nitta Gelatin Inc | For making dermis of GTE | |
MEM-alpha | Thermo Fisher Scientific | 11900073 | Cell culture medium |
Cell Culture Insert (for 24-well plate), pore size 3.0 μm | Corning, Inc. | 353096 | For tissue culture |
GlutaMAX | Thermo Fisher Scientific | 35050061 | Cell culture reagent |
DMEM | Thermo Fisher Scientific | 31600034 | Cell culture medium |
KnockOut Serum Replacement | Thermo Fisher Scientific | 10828028 | Cell culture reagent |
Tissue puncher | Shibata system service co., LTD | SP-703 | For punching holes in GTE |
RPMI 1640 | Thermo Fisher Scientific | 31800022 | Cell culture medium |
BSA | Sigma-Aldrich | A3294 | For immunostaining |
Hoechst 33342 (NucBlue Live Cell stain) | Thermo Fisher Scientific | R37605 | For labeling nuclei |
Fluorescence mount medium | Dako | For mounting samples after immunostaining | |
Anti-Cytokeratin 8+18 antibody [5D3] | abcam | ab17139 | For identifying epithelium |
Scaning electron microscope | Hitachi, Ltd. | HITACHI S-4000 | For observing samples' surface topography and composition |
Confocal laser scanning microscopy | LSM 700; Carl Zeiss Microscopy Co., Ltd. | LSM 700 | For observing samples' immunofluorescence staining |
Anti-Cytokeratin 19 antibody | abcam | ab52625 | For identifying epithelium |
Anti-vimentin antibody | abcam | ab92547 | For identifying fibroblasts and activated macrophages |
Anti-TE-7 antibody | Millipore | CBL271 | For identifying fibroblasts in the dermis |
Anti-CD68 antibody | Sigma-Aldrich | SAB2700244 | For identifying macrophages |
Human CD14 Antibody | R&D Systems | MAB3832-SP | For identifying macrophages |
Alexa Fluor 594-conjugated secondary goat anti-rabbit antibody | Thermo Fisher Scientific | A11012 | For immunofluorescence staining |
Alexa Fluor 488-conjugated secondary goat anti-mouse antibody | Thermo Fisher Scientific | A11001 | For immunofluorescence staining |
EVOS FL Cell Imaging System | Thermo Fisher Scientific | For observing the sample's immunofluorescence staining | |
THP-1 cells | Riken BRC cell bank | RCB1189 | For making iGTE |
PMA(Phorbol 12-myristate 13-acetate) | Sigma-Aldrich | P8139 | For differentiatting THP-1 cells |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved