A subscription to JoVE is required to view this content. Sign in or start your free trial.
This curriculum outlines how to execute a simulation-based boot camp to teach providers how to manage mechanically ventilated patients.
Medical management of mechanically ventilated patients is challenging to novice providers. Incorrect management of this population may lead to increased morbidity and mortality. A three-day simulation-based boot camp serves to provide one-on-one instruction with a critical care provider. These intensivists may dispense personalized immediate feedback as learners engage in hands-on practice with a real mechanical ventilator. Multiple different pathologies can be reviewed that may not be encountered in the clinical setting. Learners can visualize immediate consequences of their actions and may troubleshoot and ask questions, all while in a safe learning environment. We describe the use of human-patient simulators connected to breathing simulators and mechanical ventilators. Potential curriculum executors should be aware of the cost of the equipment and the time needed to dedicate to boot camp execution; however, this intensive interactive training has been shown to increase provider competency, knowledge, and confidence in ventilator management. This curriculum outline provides guidance on how to execute a simulation-based boot camp to train providers on the management of mechanically ventilated patients.
This boot camp was developed to teach residents how to manage a mechanically-ventilated patient, as well as troubleshoot ventilator alarms. Management of this patient population may be intimidating to the novice practitioner who may have limited experience with critically ill patients. Teaching critical care principles at the bedside is made more difficult by national work-hour restrictions1,2, and medicolegal concerns3 in the United States. Simulation is an effective modality to develop and refine critical care skills4,5, as well as invasive procedures6,7,8,9,10. Through simulation, learners may experience what the consequences of their medical decision-making is without putting patients at risk. This curriculum allows for a variety of different learning modalities, including bedside teaching from an intensivist, hands-on practice with a ventilator, and supplemental asynchronous reading.
Previous studies have shown increased knowledge with mannequin-based education of mechanical ventilation11,12. Spadaro et al.11 compared computer-based training with mannequin-based training for anesthesiology residents undergoing simulation-based teaching of mechanical ventilation. Residents who underwent mannequin-based training had higher key action and global rating scores. As noted in our previous study12, first-year residents demonstrated improved knowledge, confidence, and competency after the conclusion of this boot camp curriculum.
As written, this three-day curriculum allows for educators to initially assess their learners' baseline knowledge on day one, as well as evaluate changes in competency, knowledge, and confidence upon curriculum completion on day three. Days one and three are dedicated towards assessment, while the second day is focused on bedside teaching by content experts. Pathological conditions (acute respiratory distress syndrome [ARDS], atelectasis secondary to mucus plugging, and pneumothorax) were used for the initial assessment and final testing days, while an altered mental status station was added during the teaching day to review ventilator basics. Dynamic hyperinflation was also added to the teaching day as to reinforce ventilator diagnostics and management, including its consideration in patients with a high plateau pressure. Educators may substitute the pathologies as they feel appropriate for their teaching needs.
In preparation, simulation faculty held an initial rehearsal day to ensure all participating educators were aware of their roles and to ensure equipment was working appropriately. While we used simulation faculty for assessment and critical care physicians for teaching, educators may adjust the roles of faculty as resources dictate. Execution of this boot camp requires preparatory logistics planning. First-year residents should be scheduled protected time to ensure they can complete all three days of the curriculum. Intensivists will need to schedule time off in advance to attend bedside teaching sessions. Simulation equipment such as breathing simulators, mechanical ventilators, and human-patient simulators may have to be purchased, rented, or borrowed.
All methods described here were found to be exempt from review by the Summa Institutional Review Board.
1. Day 1 – Pre-Testing Evaluation
2. Day 2 – Curriculum and Educational Intervention
3. Day 3 – Post-testing Evaluation
As noted in Yee et al, first-year residents who underwent this boot camp demonstrated significantly improved confidence, knowledge, and performance12. Cognitive knowledge, assessed by the pre- and post-intervention multiple choice tests, increased from a mean score of 40.3% to 67.1%, with a mean change in score of +26.8% (Figure 1).
Critical actions were evaluated by...
The boot camp consists of three separate sessions. During the first day, learners complete a pre-testing confidence survey and medical knowledge test before undergoing a five-minute scenario. Faculty evaluate the learners using pre-determined critical actions. Leaners are then given asynchronous reading to complete before day 2. The second day is composed of the intervention stage, where groups of 2-3 learners work through five different scenarios. Faculty are at the bedside to provide immediate and personalized feedback...
The authors have nothing to disclose.
The authors would like to thank Anna Ciullo, M.D. for her assistance with curriculum development and execution. There was no outside funding for this report.
Name | Company | Catalog Number | Comments |
Puritan Bennett 840 Ventilator | Medtronic | 4-840120EMC-01 | http://www.medtronic.com/covidien/en-us/products/acute-care-ventilation/puritan-bennett-pb840-ventilator.html |
ASL 5000 Breathing Simulator | IngMar | 31 00 117 | https://www.ingmarmed.com/ |
Smart Stat Basic | Simulaids | 101-8002 | https://www.simulaids.com/product/101-8002 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved