A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Tumor-seeking therapeutic mesenchymal stem cells (MSCs) show promise as a treatment for invasive glioblastoma. Optimal transplantation involves delivery of MSCs into the tumor resection cavity on scaffolds. Here, preclinical techniques to study MSC treatment of glioblastoma are provided including: image-guided tumor resection; implantation of MSC-seeded scaffolds; and postoperative therapy tracking.
Glioblastoma (GBM), the most common and aggressive primary brain cancer, carries a life expectancy of 12-15 months. The short life expectancy is due in part to the inability of the current treatment, consisting of surgical resection followed by radiation and chemotherapy, to eliminate invasive tumor foci. Treatment of these foci may be improved with tumoricidal human mesenchymal stem cells (MSCs). MSCs exhibit potent tumor tropism and can be engineered to express therapeutic proteins that kill tumor cells. Advancements in preclinical models indicate that surgical resection induces premature MSC loss and reduces therapeutic efficacy. Efficacy of MSC treatment can be improved by seeding MSCs on a biodegradable poly(lactic acid) (PLA) scaffold. MSC delivery into the surgical resection cavity on a PLA scaffold restores cell retention, persistence, and tumor killing. To study the effects of MSC-seeded PLA implantation on GBM, an accurate preclinical model is needed. Here we provide a preclinical surgical protocol for image-guided tumor resection of GBM in immune-deficient mice followed by MSC-seeded scaffold implantation. MSCs are engineered with lentiviral constructs to constitutively express and secrete therapeutic TNFα-related apoptosis-inducing ligand (TRAIL) as well as green fluorescent protein (GFP) to allow fluorescent tracking. Similarly, the U87 tumor cells are engineered to express mCherry and firefly luciferase, providing dual fluorescent/luminescent tracking. While currently used for investigating stem cell mediated delivery of therapeutics, this protocol could be modified to investigate the impact of surgical resection on other GBM interventions.
Glioblastoma (GBM) is the most common primary brain cancer in adults, with a dismal median survival of just 12-15 months1,2,3,4,5. Survival has not significantly improved since 2005 when the current clinical standard of maximal surgical resection followed by radiation and concomitant and adjuvant temozolomide chemotherapy was adopted6,7. While this treatment provides patients with a temporary relief of symptoms, standard of care treatment invariably results in recurrence as invasive cancer foci evade resection and are protected from systemic therapies by the blood-brain barrier (BBB). Strategies which target invasive tumor foci while circumventing the BBB are urgently needed to gain traction against this aggressive and debilitating disease.
Human mesenchymal stem cells (MSCs) show promise as drug delivery vehicles for GBM due to their native tumor tropism8,9. MSCs possess receptors for and migrate towards soluble factors that tumors secrete, including stromal cell-derived factor 1α (SDF-1α), matrix metalloproteinase-1 (MMP-1), and monocyte chemoattractant protein-1 (MCP-1) among others10,11,12,13. Engineering MSCs to express and secrete cytotoxic drugs allows them to be harnessed as tumor-homing drug delivery vehicles. Engineered MSCs move toward invasive tumor foci and deliver therapeutic proteins. This approach has demonstrated feasibility in a variety of preclinical GBM models9,14. However, the vast majority of these models do not include surgical resection despite the clinical relevance of this component. Emerging studies using new models of resection revealed that surgical tumor removal reduces the persistence of stem cells that are directly injected into the surgical cavity15. Loss of viability resulted in reduced efficacy, likely due to decreases in the dose and duration of drug delivered to the invasive tumor foci.
To increase stem cell viability and drug delivery, MSCs can be seeded onto scaffolds prior to implantation. In this protocol, biocompatible and resorbable electrospun nanofibrous poly(lactic acid) (PLA) is used as scaffolding for the MSCs. PLA flexes and conforms to the shape of the resection cavity upon implant, which maximizes therapeutic coverage and minimizes the distance MSCs must travel to reach tumor cells. MSCs remain on the scaffold during implantation and then migrate off the scaffold toward tumor cells after implantation16,17. MSCs and the cytotoxic drugs they carry then accumulate at the tumor foci. Delivery of cytotoxic drug to the tumor requires MSC viability and persistence, both of which are aided by implantation on scaffolds.
In this procedure, lentiviral vectors are used to induce stable expression of fluorescent (in vitro tracking) and bioluminescent (in vivo tracking) markers in both cancer and stem cell lines. The human GBM line U87 is infected with mCherry and firefly luciferase (U87 mCh-Fl), and the non-therapeutic MSCs with GFP and renilla luciferase (MSC GFP-Rluc). The therapeutic variant of MSCs express TNFα-related apoptosis inducing ligand (MSC-TRAIL). TRAIL, a constitutively-secreted protein, binds to nearby death receptors on cancer cells and initiates caspase-mediated apoptosis18.
Here, we provide a protocol for preclinical image-guided GBM surgical resection and implantation of MSC-seeded scaffolds. In brief, nude mice are given a craniotomy followed three days later by stereotactic orthotopic injection of U87 mCh-Fl to establish the primary tumor. The engrafted tumor grows for a period of approximately one week. PLA scaffolds are seeded with MSCs 48 h prior to resection surgery. The tumor is then resected under fluorescent guidance, and the MSC-loaded scaffold is implanted into the resection cavity. Tumor burden and mouse survival are then tracked post-operatively with bioluminescence imaging (BLI). A timeline of these procedures is provided below (Figure 1).
Figure 1: Timeline of procedures. Mice initially receive a cranial window (Day 0). After a recovery period of three days, tumors are implanted (Day 3) and grow for approximately one week. Scaffolds are seeded with MSCs (Day 8) two days in advance of the tumor resection and implantation procedure (Day 10). Tumor progression and therapeutic efficacy are evaluated via post-operative imaging thereafter (Day 10+). Please click here to view a larger version of this figure.
Access restricted. Please log in or start a trial to view this content.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of The University of North Carolina at Chapel Hill.
NOTE: This procedure is performed on mice with an open craniotomy, as a modified version of the protocol by Mostany and Portera-Cailliau19 wherein the bone tissue that is surgically removed is discarded, leaving the brain accessible for establishment and eventual resection of GBM tumors. Following craniotomy, tumors are established via stereotactic implantation as described in Ozawa and James20. We implant 1 x 105 U87 mCh-Fl cells at the following stereotactic coordinates (in mm from bregma): (2.5, 0, -0.5).
1. Cell Culture and Scaffold Preparation
NOTE: Scaffolds should be prepared 48 h prior to implantation in mice. The following volumes are provided on a per-scaffold basis. Multiply quantities as needed for additional scaffolds.
2. Fluorescence-guided Resection and Scaffold Implantation
NOTE: Sterilize all tools prior to initializing surgery. Administer prophylactic analgesia as outlined in your institutional IACUC protocol.
3. Post-Operative Imaging
Access restricted. Please log in or start a trial to view this content.
U87 tumor cells were engineered to express mCherry and firefly luciferase (U87 mCh-Fl) prior to injection, and to allow for image-guided resection and bioluminescence tracking (Figure 2A-C). Stem cells were similarly engineered with diagnostic GFP-Rluc (MSC-GFP) or therapeutic GFP-TRIAL (MSC-TRAIL) and seeded onto the PLA scaffolds to confirm attachment and proliferation (Figure 2D-F).
Access restricted. Please log in or start a trial to view this content.
Surgery can typically be completed within 30 min per mouse, given that the following points are taken into consideration to maximize precision and avoid time-consuming pitfalls. First, ensure the mouse is properly positioned in the stereotaxic instrument prior to starting the procedure. Unwanted head movements will limit surgical accuracy of the craniotomy, location of the tumor implantation, and degree of tumor resection. Prior to resection, fully remove the portion of the dura covering the tumor. The tough, fibrous dur...
Access restricted. Please log in or start a trial to view this content.
Drs. Sheets, Bagó, and Hingtgen have equity in Falcon Therapeutics who has licensed aspects of the stem cell and scaffold technology from UNC Chapel Hill.
The authors acknowledge editorial contributions from Dr. Kathryn Pietrosimone. PLA scaffolds were manufactured by Dr. Elizabeth Loboa's lab at North Carolina State University. This work was supported by the UNC Lineberger Comprehensive Cancer Center's University Cancer Research Fund and the UNC Translational and Clinical Sciences Institute (KL2TR001109, UL1TR001111).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Just for mouse stereotaxic instrument | Stoelting | 51730 | Maintains steady head positioning during surgery |
Fluorescence dissecting stereomicroscope | Leica | M165 FC | Allows real-time imaging of tumor during resection |
Motorized integrated stereotaxic injector (ISI) system | Stoelting | 53315 | Allows precise tumor cell injection volume and rate |
Vetbond tissue adhesive | 3M | 1469 | Sugical glue to close skin wound |
Artificial tears | Akorn | 664268 | Prevents eyes from drying during surgery |
Webcol alcohol preps | Covidien | 6818 | Sterilize incision site |
Betadine surgical scrub | Purdue Fredick Company | 6761815117 | Sterilize incision site |
Cotton-tipped applicators | Fisherbrand | 23-400-115 | Surgery tool |
E-vac aspirating system | Argos | EV310 | Vacuum pump used to resect tumor |
Fibrinogen and thrombin extracted from as-received TISSEEL | Baxter | To temporarily secure the scaffold in the resection cavity | |
IVIS Kinetic in vivo optical imaging system | Caliper Life Science | Bioluminescent Imager | |
D-Luciferin potassium salt | PerkinElmer | 122799 | In vivo imaging agent |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved