A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We evaluated the effect of cervical sympathetic ganglion block on nerve repair using artificial nerve conduits. Male beagle dogs were each implanted with an artificial nerve across a 10-mm gap in the left inferior alveolar nerve; left cervical sympathetic ganglion was blocked by injecting 99.5% ethanol via lateral thoracotomy.
Polyglycolic acid collagen (PGA-C) tubes are bio-absorbable nerve tubes filled with collagen of multi-chamber structure, which consist of thin collagen films. Favorable clinical outcomes have been achieved when using these tubes for the treatment of damaged inferior alveolar nerve (IAN). A critical factor for the successful nerve regeneration using PGA-C tubes is blood supply to the surrounding tissue. Cervical sympathetic ganglion block (CSGB) creates a sympathetic blockade in the head and neck region thus increasing blood flow in the area. To ensure an adequate effect, the blockade must be administered with local anesthetics one to two times a day for several consecutive weeks; this poses a challenge when creating animal models for investigating this technique. To address this limitation, we developed an ethanol-induced CSGB in a canine model of long-term increase in blood flow in the orofacial region. We examined whether IAN regeneration via PGA-C tube implantation can be enhanced by this model. Fourteen Beagles were each implanted with a PGA-C tube across a 10-mm gap in the left IAN. The IAN is located within the mandibular canal surrounded by bone, therefore we chose piezoelectric surgery, consisting of ultrasonic waves, for bone processing, in order to minimize the risk of nerve and vessel injury. A good surgical outcome was obtained with this approach. A week after surgery, seven of these dogs were subjected to left CSGB by injection of ethanol. Ethanol-induced CSGB resulted in improved nerve regeneration, suggesting that the increased blood flow effectively promotes nerve regeneration in IAN defects. This canine model can contribute to further research on the long-term effects of CSGB.
In many cases, traumatic injury of the inferior alveolar nerve (IAN) is iatrogenic, being frequently caused by the extraction of the third molar or the placement of dental implants1,2,3. Injury of the IAN can lead to deficits in thermal and touch sensations as well as paresthesia, dysesthesia, hypoesthesia, and allodynia. Nerve injury is treated not only by conservative therapy but also by other methods, including suturing and autograft placement. However, these methods have drawbacks, which often include the lack of symptom improvement and neurological defects at the donor site4,5,6.
The artificial nerve — polyglycolic acid-collagen (PGA-C) tube was originally developed in Japan. It is a bio-absorbable tube with its inner lumen filled with a spongiform collagen7. In animal experiments, this tube was used to enhance nerve regeneration in beagle dogs with peroneal nerve defect, and was shown to promote higher level of recovery than autologous nerve transplantation8. The clinical application of the PGA-C tube began in 2002 in patients with peripheral nerve injuries. Moreover, favorable clinical outcomes have been achieved in the treatment of trigeminal neuropathy (IAN and lingual nerve)9,10,11. A critical factor for successful nerve regeneration using PGA-C tubes is blood supply to the surrounding tissue8. Cervical sympathetic ganglion block (CSGB) creates a sympathetic blockade in the head and neck region and increases blood flow to the respective innervated area12; thus, it has been used in the treatment of complex regional pain syndrome and circulatory insufficiency13,14,15. However, there have been only a few experimental investigations on the efficacy of CSGB in increasing blood flow16,17. To ensure adequate CSGB efficiency, the blockade must be applied together with local anesthetics once or twice daily for several weeks, thus posing a challenge when generating animal models to investigate this technique. To address this limitation, in a previous study, we developed a canine model of long-term increased blood flow in the orofacial region18. The model was generated by performing a CSGB by injecting 99.5% ethanol. We evaluated the oral mucosal blood flow and nasal skin temperature by laser Doppler flowmetry and infrared thermography once per week for 12 weeks. We found that the blood flow of the orofacial region was increased for 7 – 10 weeks in this model.
In the present study, we evaluated the effects of ethanol-induced CSGB on nerve regeneration.
The PGA-C tube was implanted into beagle dogs across a 10-mm gap in the left IAN. A week later, CSGB was performed by injecting ethanol. Three months after surgery, we performed a variety of electrophysiological, histological, and morphological studies to evaluate the effects of CSGB on nerve regeneration. We provide a detailed protocol for IAN reconstruction using a PGA-C tube and ethanol-induced CSGB.
Access restricted. Please log in or start a trial to view this content.
This study was conducted in accordance with the Guiding Principles for the Care and Use of Animals and approved by the Committee for Animal Research of Kyoto University (Kyoto, Japan; authorization number: R-16-16). All efforts were made to minimize animal suffering, and all sections of this report adhere to the ARRIVE (Animal Research: Reporting of in Vivo Experiments) guidelines.
1. Fabrication of the PGA-C tube
2. Surgical Procedure Set-up
3. Anesthesia and Skin Preparation
4. Inferior Alveolar Nerve Reconstruction Using PGA-C tube: Development of the Reconstruction-only Model
5. Ethanol-induced CSGB: Development of the Reconstruction + CSGB Model
6. Electrophysiological Recordings
7. Histological Analysis
Access restricted. Please log in or start a trial to view this content.
We observed an increase in the facial skin temperature of the blocked side 1 week after the left CSGB (Figure 8).
At 3 months post-reconstruction, the PGA-C tube at the reconstruction area was absorbed and regeneration of the inferior alveolar nerve was observed in the reconstruction-only and reconstruction + CSGB groups (Figure 9A, B)...
Access restricted. Please log in or start a trial to view this content.
We present an efficient method for IAN regeneration by using a bioabsorbable nerve tube in combination with ethanol-induced CSGB. For this study we used dogs, since other animal models, like mice, rats, and rabbits, have a short life expectancy and small body size, and hence cannot be used to perform the precise surgical procedures. As the IAN is located within the mandibular canal surrounded by bone, a surgical technique is necessary to avoid nerve and blood vessel damage when performing nerve reconstruction. An importa...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the Department of Bioartificial Organs in Kyoto University Institute for Frontier Medical Science. We would like to thank the veterinary staff of the Institute for Frontier Medical Science.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
NMP Collagen PS | Nippon Meatpackers | 301-84621 | Atelocollagen extracted from young porcine skin by enzyme treatment |
Surgical clippers | Roboz Surgical Instrument Company | RC-5903 | |
Disposable scalpel (No.15) | Kai medical | 219ABBZX00073000 | |
VarioSurg3 | Nakanishi | VS3-LED-HPSC, E1133 | Piezoelectric surgery for bone processing |
4-0 nylon sutures | Ethicon | 8881H | |
8-0 nylon sutures | Ethicon | 2775G | |
Isepamicin sulfate | Nichi-Iko | 620005641 | |
Disposable scalpel (No.10) | Kai medical | 219ABBZX00073000 | |
30-gauge needle | Nipro | 1134 | |
1-0 absorbable stitches | Ethicon | J347H | |
3-0 Nylon stitches | Ethicon | 8872H | |
Neo Thermo | NEC Avio | TVS-700 | Infrared thermography |
Neuropack Σ | NIHON KOHDEN | MEB-5504 | Orthodromic recorder for electrophysiological recording |
Toluidine Blue | Sigma-Aldrich | T3260-5G | |
Light microscope | Keyence | BZ-9000 | |
Mouse anti-human neurofilament protein monoclonal antibody | DAKO | N1591 | |
Polyclonal rabbit anti-S100 antibody | DAKO | Z0311 | |
Transmission electron microscopy | Hitachi High Technologies | Hitachi H-7000 | |
Dynamic cell count | Keyence | BZ-H1C | Software for morphological evaluation |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved