Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of the protocol is to measure the extension range of motion of the rat knee. The effects of various diseases that increase the stiffness of the knee joint and the effectiveness of treatments can be quantified.

Abstract

Normal knee range of motion (ROM) is critical to well-being and allows one to perform basic activities such as walking, climbing stairs and sitting. Lost ROM is called a joint contracture and results in increased morbidity. Due to the difficulty of reversing established knee contractures, early detection is important, and hence, knowing risk factors for their development is essential. The rat represents a good model with which the effect of an intervention can be studied due to the similarity of rat knee anatomy to that of humans, the rat's ability to tolerate long durations of knee immobilization in flexion, and because mechanical data can be correlated with histologic and biochemical analysis of knee tissue.

Using an automated arthrometer, we demonstrate a validated, precise, reproducible, user-independent method of measuring the extension ROM of the rat knee joint at specific torques. This arthrometer can be used to determine the effects of interventions on knee joint ROM in the rat.

Introduction

Having full range of motion (ROM) of the joints is critical for health and well-being1. A loss in joint passive ROM is called a contracture2. Joint contractures may arise from numerous conditions, including prolonged bedrest, paralysis, joint arthroplasty, burns, infection, and neurologic conditions1,3,4,5. A contracture of the knee can be disabling as it accelerates joint degeneration, increases the risk of falls and detrimentally affects a person's ability to perform basic functional task....

Protocol

The rat knee immobilization model used has been approved by the University of Ottawa Animal Care and Veterinary Service and the local ethics committee.

1. Animal Preparation

  1. At the end of the predetermined immobilization period, euthanize the rats by administration of carbon dioxide.
    NOTE: Here we used an immobilization model with a plate and 2 screws (one inserted in the proximal femur and the other in the distal tibia), which avoids violation of any knee joint stru.......

Representative Results

The amount of knee extension determined for various periods of immobility are summarized for increasing durations of immobility and show that more severe contractures were produced following increasing lengths of immobilization. Representative results using ImageJ are shown in Figure 3.

The ability to measure maximum extension of rat knees in a valid, precise and reproducible, user-independent manne.......

Discussion

The rat knee arthrometer was developed to reproducibly and reliably determine the maximum extension of the rat knee following an intervention. Advantages of this device include the consistent generation of torque across the knee joint with a constant arm length and extension force. Another advantage includes the ability to set the torque at a level that allows repetitive testing on the same joint to evaluate the influence of different articular structures on knee ROM, such as muscle, capsule, or ligament. For example, fo.......

Disclosures

The authors have no disclosures or conflicts of interest to declare.

Acknowledgements

The authors would like to thank Joao Tomas for his technical assistance with the device and Khaoula Louati for assistance in developing the image analysis methods.

....

Materials

NameCompanyCatalog NumberComments
ArthrometerThe Ottawa Hospital Rehabilitation Centre - Rehabilitation Engineering N/A
CameraCanonEOS-500DCommonly known as EOS Rebel T1i
ImageJNational Institutes of HealthVersion 1.45s
Absotbent UnderpadsVWR820202-845
Dissection KitFisher08-855Kit Includes:  Forceps: medium points, nickel-plated
 Scissors: 1.5 in. (40mm) blades, stainless steel
 Dissecting knife handle: nickel-plated
 Knife blades: stainless steel, pack of 3
 Dropping pipet: glass
 Bent dissecting needle: stainless steel with plastic handle
 Straight dissecting needle: stainless steel with plastic handle
Vinylite Ruler 6 in. (15cm)
Precision Screw DriverMastercraft057-3505-8
Scalpel Blades - #10Fine Science Tools10010-00
ScrewdriverStanley057-3558-2
Hex KeysMastercraft058-9684-2
Universal AC to DC powder adapterRCA108004951

References

  1. Clavet, H., Hébert, P. C., Fergusson, D., Doucette, S., Trudel, G. Joint contracture following prolonged stay in the intensive care unit. Canadian Medical Association Journal. 178 (6), 691-697 (2008).
  2. Campbell, T. M., Dudek, N., Trudel, G., Silver, J. K., Frontera, W. R., Rizzo, T. D.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Knee ArthrometerTissue specific ContributionsKnee Flexion ContractureRat ModelJoint Range Of MotionDegloveFemur ClampArthrometer MotorTorqueMyotomyArthrogenicNon muscular Contracture

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved