JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Behavior

A Networked Desktop Virtual Reality Setup for Decision Science and Navigation Experiments with Multiple Participants

Published: August 26th, 2018

DOI:

10.3791/58155

1Chair of Cognitive Science, ETH Zürich, 2Digital Society Initiative, University of Zürich, 3Department of Geography, University of Zürich, 4Decision Science Laboratory, ETH Zürich, 5Computer Science Department, Rutgers University

This paper describes a method for conducting multi-user experiments on decision-making and navigation using a networked computer laboratory.

Investigating the interactions among multiple participants is a challenge for researchers from various disciplines, including the decision sciences and spatial cognition. With a local area network and dedicated software platform, experimenters can efficiently monitor the behavior of the participants that are simultaneously immersed in a desktop virtual environment and digitalize the collected data. These capabilities allow for experimental designs in spatial cognition and navigation research that would be difficult (if not impossible) to conduct in the real world. Possible experimental variations include stress during an evacuation, cooperative and competitive search tasks, and other contextual factors that may influence emergent crowd behavior. However, such a laboratory requires maintenance and strict protocols for data collection in a controlled setting. While the external validity of laboratory studies with human participants is sometimes questioned, a number of recent papers suggest that the correspondence between real and virtual environments may be sufficient for studying social behavior in terms of trajectories, hesitations, and spatial decisions. In this article, we describe a method for conducting experiments on decision-making and navigation with up to 36 participants in a networked desktop virtual reality setup (i.e., the Decision Science Laboratory or DeSciL). This experiment protocol can be adapted and applied by other researchers in order to set up a networked desktop virtual reality laboratory.

Research on spatial cognition and navigation typically studies the spatial decision-making (e.g., turning left or right at an intersection) and mental representation of individuals in real and virtual environments1,2. The advantages of virtual reality (VR) include the prevention of ethical and safety issues (e.g., during a dangerous evacuation3), the automatic measurement and analysis of spatial data4, and a balanced combination of internal and external validity5,6,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All methods described here have been approved by Research Ethics Committee of ETH Zürich as part of the proposal EK 2015-N-37.

1. Recruit Participants for the Planned Experimental Session.

  1. Sample the participants within particular constraints (e.g., age, gender, educational background) using the participant recruitment system.
  2. Send invitations by email to the randomly selected participants using the contact information provided by the recruitment system.

    Log in or to access full content. Learn more about your institution’s access to JoVE content here

For each client on each trial, the experiment data from the DeSciL typically include trajectories, time stamps, and measures of performance (e.g., whether the participant turned in the "correct" direction at a particular intersection). A representative study investigated the effects of signage complexity on the route choice for a crowd of human participants (with virtual avatars) in a simple Y-shaped virtual environment. In this experiment, 28 participants (12 women and 1.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this article, we described a multi-user desktop virtual reality laboratory in which up to 36 participants can interact and simultaneously navigate through various virtual environments. The experimental protocol details the steps necessary for this type of research and unique to multi-user scenarios. Considerations specific to these scenarios include the number of participants in attendance, the cost of seemingly small experimenter errors, rendering and networking capacities (both server- and client-side), training wit.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The representative study was funded by the Swiss National Science Foundation as part of the grant "Wayfinding in Social Environments" (No. 100014_162428). We want to thank M. Moussaid for insightful discussions. We also want to thank C. Wilhelm, F. Thaler, H. Abdelrahman, S. Madjiheurem, A. Ingold, and A. Grossrieder for their work during the software development.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
PC Lenovo IdeaCentre AIO 700 24’’ screen, 16 GB RAM, and SSDs. CPU: Intel core i7. GPU:NVidia GeForce GTX 950A
Keyboard Lenovo LXH-EKB-10YA
Mouse Lenovo SM-8825
Eye tracker Tobii Technology Tobii EyeX Data rate: 60 Hz. Tracking screen size: Up to 27″
Communication audio system Biamp Systems Networked paging station - 1 Ethernet:100BaseTX

  1. Waller, D., Nadel, L. . Handbook of Spatial Cognition. , (2013).
  2. Denis, M. . Space and Spatial Cognition: A Multidisciplinary Perspective. , (2017).
  3. Moussaïd, M., Kapadia, M., Thrash, T., Sumner, R. W., Gross, M., Helbing, D., Hölscher, C. Crowd behaviour during high-stress evacuations in an immersive virtual environment. Journal of the Royal Society Interface. 13 (122), 20160414 (2016).
  4. Grübel, J., Weibel, R., Jiang, M. H., Hölscher, C., Hackman, D. A., Schinazi, V. R. EVE: A Framework for Experiments in Virtual Environments. Spatial Cognition X: Lecture Notes in Artificial Intelligence. , 159-176 (2017).
  5. Loomis, J. M., Blascovich, J. J., Beall, A. C. Immersive virtual environment technology as a basic research tool in psychology. Behavior Research Methods, Instruments, & Computers. 31 (4), 557-564 (1999).
  6. Brooks, F. P. What's Real About Virtual Reality?. Proceedings IEEE Virtual Reality. , (1999).
  7. Moorthy, K., Munz, Y., Jiwanji, M., Bann, S., Chang, A., Darzi, A. Validity and reliability of a virtual reality upper gastrointestinal simulator and cross validation using structured assessment of individual performance with video playback. Surgical Endoscopy and Other Interventional Techniques. 18 (2), 328-333 (2004).
  8. Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., Epstein, R. A. Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning Memory and Cognition. 40 (3), 669-682 (2014).
  9. Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., Epstein, R. A. Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus. 23 (6), 515-528 (2013).
  10. Ruddle, R. A., Payne, S. J., Jones, D. M. Navigating Large-Scale "Desk- Top" Virtual Buildings: Effects of orientation aids and familiarity. Presence. 7 (2), 179-192 (1998).
  11. Riva, G. Virtual Reality in Psychotherapy: Review. CyberPsychology & Behavior. 8 (3), 220-230 (2005).
  12. Ruse, S. A., et al. Development of a Virtual Reality Assessment of Everyday Living Skills. Journal of Visualized Experiments. (86), 1-8 (2014).
  13. Ploydanai, K., van den Puttelaar, J., van Herpen, E., van Trijp, H. Using a Virtual Store As a Research Tool to Investigate Consumer In-store Behavior. Journal of Visualized Experiments. (125), 1-15 (2017).
  14. Satava, R. M. Virtual reality surgical simulator - The first steps. Surgical Endoscopy. 7 (3), 203-205 (1993).
  15. Stanney, K. M., Hale, K. S. . Handbook of virtual environments: Design, implementation, and applications. , 811-834 (2014).
  16. Ryu, J., Kim, G. J. Using a vibro-tactile display for enhanced collision perception and presence. Proceedings of the ACM symposium on Virtual reality software and technology VRST 04. , 89 (2004).
  17. Louison, C., Ferlay, F., Mestre, D. R. Spatialized vibrotactile feedback contributes to goal-directed movements in cluttered virtual environments. 2017 IEEE Symposium on 3D User Interfaces (3DUI). , 99-102 (2017).
  18. Knierim, P., et al. Tactile Drones - Providing Immersive Tactile Feedback in Virtual Reality through Quadcopters. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA '17. , 433-436 (2017).
  19. Serafin, S., Nordahl, R., De Götzen, A., Erkut, C., Geronazzo, M., Avanzini, F. Sonic interaction in virtual environments. 2015 IEEE 2nd VR Workshop on Sonic Interactions for Virtual Environments (SIVE). , 1-2 (2015).
  20. Grübel, J., Thrash, T., Hölscher, C., Schinazi, V. R. Evaluation of a conceptual framework for predicting navigation performance in virtual reality. PLoS One. 12 (9), (2017).
  21. Thrash, T., Kapadia, M., Moussaid, M., Wilhelm, C., Helbing, D., Sumner, R. W., Hölscher, C. Evaluation of control interfaces for desktop virtual environments. Presence. 24 (4), (2015).
  22. Ruddle, R. A., Volkova, E., Bülthoff, H. H. Learning to walk in virtual reality. ACM Transactions on Applied Perception. 10 (2), 1-17 (2013).
  23. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G. The walking behaviour of pedestrian social groups and its Impact on crowd dynamics. PLoS One. 5 (4), e10047 (2010).
  24. Bode, N. W. F., Franks, D. W., Wood, A. J., Piercy, J. J. B., Croft, D. P., Codling, E. A. Distinguishing Social from Nonsocial Navigation in Moving Animal Groups. The American Naturalist. 179 (5), 621-632 (2012).
  25. Kinateder, M., et al. Social influence on route choice in a virtual reality tunnel fire. Transportation Research Part F: Traffic Psychology and Behaviour. 26, 116-125 (2014).
  26. Drury, J., et al. Cooperation versus competition in a mass emergency evacuation: A new laboratory simulation and a new theoretical model. Behavior Research Methods. 41 (3), 957-970 (2009).
  27. Helbing, D., Buzna, L., Johansson, A., Werner, T. Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions. Transportation Science. 39 (1), 1-24 (2005).
  28. Moussaïd, M., Helbing, D., Theraulaz, G. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences of the United States of America. 108 (17), 6884-6888 (2011).
  29. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G. An open framework for developing, evaluating, and sharing steering algorithms. International Workshop on Motion in Games. , 158-169 (2009).
  30. Singh, S., Kapadia, M., Hewlett, B., Reinman, G., Faloutsos, P. A modular framework for adaptive agent-based steering. Symposium on Interactive 3D Graphics and Games. , (2011).
  31. Bode, N., Codling, E. Human exit route choice in virtual crowd evacuations. Animal Behaviour. 86, 347-358 (2013).
  32. Bode, N. W. F., Kemloh Wagoum, A. U., Codling, E. A. Human responses to multiple sources of directional information in virtual crowd evacuations. Journal of the Royal Society Interface. 11 (91), 20130904 (2014).
  33. Pandzic, I. S., Capin, T., Lee, E., Thalmann, N. M., Thalmann, D. A flexible architecture for virtual humans in networked collaborative virtual environments. Computer Graphics Forum. 16, (1997).
  34. Joslin, C., Pandzic, I. S., Thalmann, N. M. Trends in networked collaborative virtual environments. Computer Communications. 26 (5), 430-437 (2003).
  35. Molka-Danielsen, J., Chabada, M. Application of the 3D multi user virtual environment of Second Life to emergency evacuation simulation. System Sciences (HICSS), 2010 43rd Hawaii International Conference. , 1-9 (2010).
  36. Normoyle, A., Drake, J., Safonova, A. . Egress online: Towards leveraging massively, multiplayer environments for evacuation studies. , (2012).
  37. Bock, O., Baetge, I., Nicklisch, A. hroot: Hamburg registration and organization online tool. European Economic Review. 71, 117-120 (2014).
  38. Tanvir Ahmed, D., Shirmohammadi, S., Oliveira, J., Bonney, J. Supporting large-scale networked virtual environments. Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2007. IEEE Symposium. , 150-154 (2007).
  39. Cipresso, P., Bessi, A., Colombo, D., Pedroli, E., Riva, G. Computational psychometrics for modeling system dynamics during stressful disasters. Frontiers in Psychology. 8, 1-6 (2017).
  40. Bernold, E., Gsottbauer, E., Ackermann, K., Murphy, R. . Social framing and cooperation: The roles and interaction of preferences and beliefs. , 1-26 (2015).
  41. Balietti, S., Goldstone, R. L., Helbing, D. Peer review and competition in the Art Exhibition Game. Proceedings of the National Academy of Sciences of the United States of America. 113 (30), 8414-8419 (2016).
  42. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., Mainen, Z. F. Big behavioral data: Psychology, ethology and the foundations of neuroscience. Nature Neuroscience. 17 (11), 1455-1462 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved