Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Wir beschreiben ein Protokoll für die markierungsfreie Identifizierung von Lymphozyten-Subtypen mit quantitativen Phase Bildgebung und ein maschinelles lernen-Algorithmus. Messungen der 3D Brechungsindex Schichtbilder von Lymphozyten präsentieren 3D morphologische und biochemische Informationen für einzelne Zellen, die dann mit einem Computerlernen Algorithmus zur Identifizierung von Zelltypen analysiert wird.
Wir beschreiben hier ein Protokoll für die markierungsfreie Identifizierung von Lymphozyten-Subtypen mit quantitativen Phase Bildverarbeitung und maschinelles lernen. Identifizierung von Lymphozyten-Subtypen ist wichtig für das Studium der Immunologie sowie Diagnostik und Behandlung von verschiedenen Krankheiten. Standard-Methoden zur Klassifizierung von Lymphozyten Arten setzen derzeit, auf Kennzeichnung bestimmte Membranproteine über Antigen-Antikörper-Reaktionen. Diese Kennzeichnung Techniken tragen jedoch die möglichen Risiken der Zellfunktionen zu verändern. Das hier beschriebene Protokoll überwindet diese Herausforderungen durch die Ausnutzung der intrinsischen optische Kontraste durch 3D quantitativen Phase Bildgebung und eine Maschine Lernalgorithmus gemessen. Messung der 3D Brechungsindex (RI) Schichtbilder von Lymphozyten liefert quantitative Informationen über 3D Morphologie und Phänotypen der einzelnen Zellen. Die biophysikalischen Parameter aus der gemessenen 3D RI Schichtbilder extrahiert werden dann mit einem Algorithmus für maschinelles lernen, die markierungsfreie Identifizierung der Lymphozyten-Typen auf eine einzelne Zelle Ebene ermöglichen quantitativ analysiert. Wir messen die 3D RI Schichtbilder von B, T CD4 + und CD8 + T-Lymphozyten und identifiziert ihre Zelltypen mit über 80 % Genauigkeit. In diesem Protokoll beschreiben wir die einzelnen Schritte zum Lymphozyten isoliert, 3D quantitativen Phase Bildverarbeitung und maschinelles Lernen zur Ermittlung Lymphozyten Typen.
Lymphozyten lassen sich einteilen in verschiedene Subtypen einschließlich B, Helfer (CD4 +) T, zytotoxische (CD8 +) T und regulatorischen T Zellen. Jeder Lymphozyten-Typ hat eine andere Rolle in der adaptiven Immunsystems; zum Beispiel produzieren B-Lymphozyten Antikörper, wobei T-Lymphozyten spezifische Antigene erkennen, Beseitigung von abnormen Zellen und B-Lymphozyten zu regulieren. Lymphozyten Funktion und Regulation ist fest geregelt und im Zusammenhang mit verschiedenen Krankheiten einschließlich Krebs1, Autoimmunerkrankungen2und Virusinfektionen3. So ist die Identifizierung von Lymphozyten....
Tierbetreuung und experimentelle Verfahren wurden unter Zustimmung des institutionellen Tier Pflege und Nutzung Ausschuss KAIST (KA2010-21, KA2014-01 und KA2015-03) durchgeführt. Alle Versuche in dieser Studie wurden gemäß den genehmigten Richtlinien durchgeführt.
(1) Lymphozyten Isolation aus Maus Blut
Abbildung 1 zeigt schematisch das gesamte Protokoll. Bei der hier vorgestellten Verfahren wir isolierte B (n = 149), CD4 + T (n = 95), und CD8 + T (n = 112) Lymphozyten. Um Phase und Amplitude Informationen in verschiedenen Winkeln der Beleuchtung zu erhalten, wurden mehrere 2D Hologramme von einzelnen Lymphozyten gemessen durch Veränderung des Winkels der Beleuchtung (von-60 ° bis 60 ° c). In der Regel 50 Hologramme können verwendet werden, um eine 3.......
Wir präsentieren Ihnen eine Protokoll, die die markierungsfreie Identifizierung von Lymphozyten-Typen, die Nutzung von 3D quantitativen Phase Bildverarbeitung und maschinelles Lernen ermöglicht. Wichtige Schritte dieses Protokolls sind quantitative Phase Bildgebung und Feature-Auswahl. Für die optimale holographische Bildgebung sollte die Dichte der Zellen kontrolliert werden, wie oben beschrieben. Mechanische Stabilität der Zellen ist auch wichtig, eine genaue 3D RI-Verteilung zu erhalten, weil frei verschiebbar ode.......
Prof. Y. Park, Y.-Jo, Y. S. Kim und S. Lee haben finanzielle Interessen in Tomocube, Inc., ein Unternehmen, das vertreibt optische Beugung Tomographie und quantitativen Phase imaging Instrumente und ist einer der Sponsoren des Werkes.
Diese Arbeit wurde von der KAIST BK21 + Programm, Tomocube, Inc., und der National Research Foundation of Korea (2015R1A3A2066550, 2017M3C1A3013923, 2018 K 000396) unterstützt. Y. Jo erkennt Unterstützung seitens der KAIST Presidential Fellowship und Asan Stiftung biomedizinische Wissenschaft Stipendium.
....Name | Company | Catalog Number | Comments |
Mouse | Daehan Biolink | C57BL/6J mice | gender and age-matched, 6 – 8 weeks |
Falcon conical centrifuge tube | ThermoFisher Scientific | 14-959-53A | 15 mL |
Phosphate-buffered saline | Sigma-Aldrich | 806544-500ML | |
Ammonium-chloride-potassium lysing buffer | ThermoFisher Scientific | A1049201 | |
RPMI-1640 medium | Sigma-Aldrich | R8758 | |
Fetal bovine serum | ThermoFisher Scientific | 10438018 | |
Antibody | BD Biosciences | 553140 (RRID:AB_394655) | CD16/32 (clone 2.4G2) |
Antibody | BD Biosciences | 555275 (RRID:AB_395699) | CD3ε (clone 17A2) |
Antibody | Biolegnd | 100734 (RRID:AB_2075238) | CD8α (clone 53-6.7) |
Antibody | BD Biosciences | 557655 (RRID:AB_396770) | CD19 (clone 1D3) |
Antibody | BD Biosciences | 557683 (RRID:AB_396793) | CD45R/B220 (clone RA3-6B2) |
Antibody | BD Biosciences | 552878 (RRID:AB_394507) | NK1.1 (clone PK136) |
Antibody | eBioscience | 11-0041-85 (RRID:AB_464893) | CD4 (clone GK1.5) |
DAPI | Roche | 10236276001 | 4,6-diamidino-2-phenylindole |
Flow cytometry | BD Biosciences | Aria II or III | |
Imaging chamber | Tomocube, Inc. | TomoDish | |
Holotomography | Tomocube, Inc. | HT-1H | |
Holotomography imaging software | Tomocube, Inc. | TomoStudio | |
Image professing software | MathWorks | Matlab R2017b |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten