JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Immunology and Infection

Markierungsfreie Identifikation von Lymphozyten-Subtypen mit dreidimensionale Quantitative Phase Bildgebung und maschinelles lernen

Published: November 19th, 2018

DOI:

10.3791/58305

1Department of Physics, University of Cambridge, 2Department of Physics, Korea Advanced Institute of Science and Technology, 3KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, 4Tomocube, Inc., 5Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 6Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 7Department of Applied Physics, Stanford University

Abstract

Wir beschreiben hier ein Protokoll für die markierungsfreie Identifizierung von Lymphozyten-Subtypen mit quantitativen Phase Bildverarbeitung und maschinelles lernen. Identifizierung von Lymphozyten-Subtypen ist wichtig für das Studium der Immunologie sowie Diagnostik und Behandlung von verschiedenen Krankheiten. Standard-Methoden zur Klassifizierung von Lymphozyten Arten setzen derzeit, auf Kennzeichnung bestimmte Membranproteine über Antigen-Antikörper-Reaktionen. Diese Kennzeichnung Techniken tragen jedoch die möglichen Risiken der Zellfunktionen zu verändern. Das hier beschriebene Protokoll überwindet diese Herausforderungen durch die Ausnutzung der intrinsischen optische Kontraste durch 3D quantitativen Phase Bildgebung und eine Maschine Lernalgorithmus gemessen. Messung der 3D Brechungsindex (RI) Schichtbilder von Lymphozyten liefert quantitative Informationen über 3D Morphologie und Phänotypen der einzelnen Zellen. Die biophysikalischen Parameter aus der gemessenen 3D RI Schichtbilder extrahiert werden dann mit einem Algorithmus für maschinelles lernen, die markierungsfreie Identifizierung der Lymphozyten-Typen auf eine einzelne Zelle Ebene ermöglichen quantitativ analysiert. Wir messen die 3D RI Schichtbilder von B, T CD4 + und CD8 + T-Lymphozyten und identifiziert ihre Zelltypen mit über 80 % Genauigkeit. In diesem Protokoll beschreiben wir die einzelnen Schritte zum Lymphozyten isoliert, 3D quantitativen Phase Bildverarbeitung und maschinelles Lernen zur Ermittlung Lymphozyten Typen.

Explore More Videos

Immunologie und Infektion

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved