A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Immunology and Infection
Wir beschreiben hier ein Protokoll für die markierungsfreie Identifizierung von Lymphozyten-Subtypen mit quantitativen Phase Bildverarbeitung und maschinelles lernen. Identifizierung von Lymphozyten-Subtypen ist wichtig für das Studium der Immunologie sowie Diagnostik und Behandlung von verschiedenen Krankheiten. Standard-Methoden zur Klassifizierung von Lymphozyten Arten setzen derzeit, auf Kennzeichnung bestimmte Membranproteine über Antigen-Antikörper-Reaktionen. Diese Kennzeichnung Techniken tragen jedoch die möglichen Risiken der Zellfunktionen zu verändern. Das hier beschriebene Protokoll überwindet diese Herausforderungen durch die Ausnutzung der intrinsischen optische Kontraste durch 3D quantitativen Phase Bildgebung und eine Maschine Lernalgorithmus gemessen. Messung der 3D Brechungsindex (RI) Schichtbilder von Lymphozyten liefert quantitative Informationen über 3D Morphologie und Phänotypen der einzelnen Zellen. Die biophysikalischen Parameter aus der gemessenen 3D RI Schichtbilder extrahiert werden dann mit einem Algorithmus für maschinelles lernen, die markierungsfreie Identifizierung der Lymphozyten-Typen auf eine einzelne Zelle Ebene ermöglichen quantitativ analysiert. Wir messen die 3D RI Schichtbilder von B, T CD4 + und CD8 + T-Lymphozyten und identifiziert ihre Zelltypen mit über 80 % Genauigkeit. In diesem Protokoll beschreiben wir die einzelnen Schritte zum Lymphozyten isoliert, 3D quantitativen Phase Bildverarbeitung und maschinelles Lernen zur Ermittlung Lymphozyten Typen.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved