JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Fabricating a Kidney Cortex Extracellular Matrix-Derived Hydrogel

Published: October 13th, 2018

DOI:

10.3791/58314

1Department of Bioengineering, University of Washington, 2Department of Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, 3Department of Medicine, Kidney Research Institute, University of Washington

Here we present a protocol to fabricate a kidney cortex extracellular matrix-derived hydrogel to retain the native kidney extracellular matrix (ECM) structural and biochemical composition. The fabrication process and its applications are described. Finally, a perspective on using this hydrogel to support kidney-specific cellular and tissue regeneration and bioengineering is discussed.

Extracellular matrix (ECM) provides important biophysical and biochemical cues to maintain tissue homeostasis. Current synthetic hydrogels offer robust mechanical support for in vitro cell culture but lack the necessary protein and ligand composition to elicit physiological behavior from cells. This manuscript describes a fabrication method for a kidney cortex ECM-derived hydrogel with proper mechanical robustness and supportive biochemical composition. The hydrogel is fabricated by mechanically homogenizing and solubilizing decellularized human kidney cortex ECM. The matrix preserves native kidney cortex ECM protein ratios while also enabling gelation to physiological mechanical stiffnesses. The hydrogel serves as a substrate upon which kidney cortex-derived cells can be maintained under physiological conditions. Furthermore, the hydrogel composition can be manipulated to model a diseased environment which enables the future study of kidney diseases.

Extracellular matrix (ECM) provides important biophysical and biochemical cues to maintain tissue homeostasis. The complex molecular composition regulates both structural and functional properties of tissue. Structural proteins provide cells with spatial awareness and allow for adhesion and migration1. Bound ligands interact with cell surface receptors to control cell behavior2. Kidney ECM contains a plethora of molecules whose composition and structure varies depending on anatomical location, developmental stage, and disease state3,4. Recapitulating the complexi....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Human kidneys were isolated by LifeCenter Northwest following ethical guidelines set by the Association of Organ Procurement Organizations. This protocol follows animal care and cell culture guidelines outlined by the University of Washington.

1. Preparation of Human Kidney Tissue

  1. Preparation of decellularization solution
    1. Sterilize a 5000 mL beaker and a 70 x 10 mm stir bar.
    2. Mix 1:1000 (weight:volume) sodium dodecyl sulfate (SDS) in autoclaved deionized water.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The kECM hydrogel provides a matrix for kidney cell culture with similar chemical composition as the native kidney microenvironment. To fabricate the hydrogel, kidney cortex tissue is mechanically isolated from a whole kidney organ and diced (Figure 1). Decellularization with a chemical detergent (Figure 2A.1-A.3) followed by rinses with water to remove detergent particles (Figure 2A.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Matrices provide important mechanical and chemical cues that govern cell behavior. Synthetic hydrogels are able to support complex 3-dimensional patterning but fail to provide the diverse extracellular cues found in physiological matrix microenvironments. Hydrogels derived from native ECM are ideal materials for both in vivo and in vitro studies. Previous studies have used decellularized ECM hydrogels to coat synthetic biomaterials to prevent host immunological responses33,<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to acknowledge the Lynn and Mike Garvey Imaging Laboratory at the Institute for Stem Cell and Regenerative Medicine and LifeCenter NorthWest. They would also like to acknowledge the financial support of National Institutes of Health grants, UH2/UH3 TR000504 (to J.H.) and DP2DK102258 (to Y.Z.), NIH T32 training grant DK0007467 (to R.J.N.), and an unrestricted gift from the Northwest Kidney Centers to the Kidney Research Institute.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Preparation of Kidney Tissue
5000 mL Beaker Sigma-Aldrich Z740589
Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich 436143
Sterile H2O Autoclaved DI H2O
Stir Bar (70 x 10 mm) Fisher Science 14-512-128
500 mL Vacuum Filter VWR 97066-202
Stir Plate Sigma-Aldrich CLS6795420D
1000 mL Beaker Sigma-Aldrich CLS10031L
Forceps Sigma-Aldrich F4642 Any similar forceps may be used
Scissor-Handle Hemostat Clamp Sigma-Aldrich Z168866
Dissecting Scissors Sigma-Aldrich Z265977
Scalpel Handle, No. 4 VWR 25859-000 Any similar scalpel handle may be used
Scalpel Blade, No. 20 VWR 25860-020 Any similar scalpel blade may be used
Stir Bar (38.1 x 9.5 mm) Fisher Science 14-513-52
Absorbent Underpad VWR 82020-845
Petri Dish (150 x 25 mm) Corning 430597
Autoclavable Biohazard Bag VWR 14220-026
Sterile Cell Strainer (40 um) Fisher Science 22-363-547
Cell Culture Grade Water HyClone SH30529.03
30 mL Freestanding Tube VWR 89012-778
Fabrication of ECM Gel
Tissue Homogenizer Machine Polytron PCU-20110
Freeze Dryer Labconco 7670520
20 mL Glass Scintillation Vials and Cap Sigma-Aldrich V7130
Stir Bar (15.9 x 8 mm) Fisher Science 14-513-62
Pepsin from Porcine Gastric Mucosa Sigma-Aldrich P7012
0.01 N HCl Sigma-Aldrich 320331 Dilute to 0.01 N HCl with cell culuture water
Kidney ECM Gelation
1 N NaOH (Sterile) Sigma-Aldrich 415413 Dilute to 1 N in cell culture grade water
Medium 199 Sigma-Aldrich M4530
15 mL Conical Tube ThermoFisher 339651
Cell Culture Media ThermoFisher 11330.032 Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12)
Fetal Bovine Serum (FBS) Gibco 10082147
Antibiotic-Antimycotic 100X Life Technologies 15240-062
Insulin, Transferrin, Selenium, Sodium Pyruvate Solution (ITS-A) 100X Life Technologies 51300-044
1 mL Syringe Sigma-Aldrich Z192325
Microspatula Sigma-Aldrich Z193208

  1. Lelongt, B., Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatric Nephrology. 18 (8), 731-742 (2003).
  2. Yue, B. Biology of the Extracellular Matrix: An Overview. Journal of Glaucoma. 23, S20-S23 (2014).
  3. Miner, J. H. Renal basement membrane components. Kidney International. 56 (6), 2016-2024 (1999).
  4. Petrosyan, A., et al. Decellularized Renal Matrix and Regenerative Medicine of the Kidney: A Different Point of View. Tissue Engineering Part B. 22 (3), 183-192 (2016).
  5. Caralt, M., et al. Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation. American Journal of Transplantation. 15 (1), 64-75 (2015).
  6. Nakayama, K. H., Batchelder, C. A., Lee, C. I., Tarantal, A. F. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Engineering Part A. 16 (7), 2207-2216 (2010).
  7. Nakayama, K. H., Lee, C. C. I., Batchelder, C. A., Tarantal, A. F. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds. Public Library of Science ONE. 8 (5), (2013).
  8. Orlando, G., et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Annals of Surgery. 256 (2), 363-370 (2012).
  9. Sullivan, D. C., et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 33 (31), 7756-7764 (2012).
  10. Choi, S. H., et al. Development of a porcine renal extracellular matrix scaffold as a platform for kidney regeneration. Journal of Biomedical Materials Research Part A. 103 (4), 1391-1403 (2015).
  11. Ross, E. A., et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis. 8 (2), 49-55 (2012).
  12. Nagao, R. J., et al. Decellularized Human Kidney Cortex Hydrogels Enhance Kidney Microvascular Endothelial Cell Maturation and Quiescence. Tissue Engineering Part A. 22 (19-20), 1140-1150 (2016).
  13. Gupta, S. K., Mishra, N. C., Dhasmana, A. Decellularization Methods for Scaffold Fabrication. Methods in Molecular Biology. , 1-10 (2017).
  14. Hudson, T., et al. Optimized Acellular Nerve Graft is Immunologically Tolerated and Supports Regeneration. Tissue Engineering. 10 (11), 1641-1651 (2004).
  15. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  16. Ott, H. C., et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine. 14 (2), 213-221 (2008).
  17. Uygun, B., et al. Organ reengineering through development of a transplantable recellularied liver graft using decellularized liver matrix. Nature Medicine. 16 (7), 814-820 (2010).
  18. Nagao, R. J., et al. Preservation of Capillary-beds in Rat Lung Tissue Using Optimized Chemical Decellularization. Journal of Materials Chemistry B. 1 (37), 4801-4808 (2013).
  19. Song, J. J., et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine. 19 (5), 646-651 (2013).
  20. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29 (11), 1630-1637 (2008).
  21. Wolf, M. T., et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 33 (29), 7028-7038 (2012).
  22. Fisher, M. B., et al. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surgery, Sports Traumatology, Arthroscopy. 20 (7), 1357-1365 (2012).
  23. Ghuman, H., et al. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials. 91, 166-181 (2016).
  24. Rijal, G. The decellularized extracellular matrix in regenerative medicine. Regenerative Medicine. 12 (5), 475-477 (2017).
  25. Lennon, R., et al. Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix. Journal of the American Society of Nephrology. 25 (5), 939-951 (2014).
  26. Bonandrini, B., et al. Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells. Tissue Engineering Part A. 20 (9-10), 1486-1498 (2014).
  27. O'Neill, J. D., Freytes, D. O., Anandappa, A. J., Oliver, J. A., Vunjak-Novakovic, G. V. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials. 34 (38), 9830-9841 (2013).
  28. Streitberger, K. -. J., et al. High-resolution mechanical imaging of the kidney. Journal of Biomechanics. 47 (3), 639-644 (2014).
  29. Bensamoun, S. F., et al. Stiffness imaging of the kidney and adjacent abdominal tissues measured simultaneously using magnetic resonance elastography. Clinical Imaging. 35 (4), 284-287 (2011).
  30. Moon, S. K., et al. Quantification of Kidney Fibrosis Using Ultrasonic Shear Wave Elastography. Journal of Ultrasound in Medicine. 34, 869-877 (2015).
  31. Genovese, F., Manresa, A. A., Leeming, D. J., Karsdal, M. A., Boor, P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis?. Fibrogenesis & Tissue Repair. 7 (1), (2014).
  32. Hewitson, T. D. Fibrosis in the kidney: is a problem shared a problem halved?. Fibrogenes & Tissue Repair. 5 (1), S14 (2012).
  33. Wolf, M. T., et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research Part A. 102 (1), 234-246 (2014).
  34. Faulk, D. M., et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 35 (30), 8585-8595 (2014).
  35. Jeffords, M. E., Wu, J., Shah, M., Hong, Y., Zhang, G. Tailoring Material Properties of Cardiac Matrix Hydrogels To Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces. 7 (20), 11053-11061 (2015).
  36. Kim, M. -. S., et al. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy. Public Library of Science ONE. 11 (5), e0156038 (2016).
  37. Paduano, F., Marrelli, M., White, L. J., Shakesheff, K. M., Tatullo, M. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. Public Library of Science ONE. 11 (2), e0148225 (2016).
  38. Viswanath, A., et al. Extracellular matrix-derived hydrogels for dental stem cell delivery. Journal of Biomedical Materials Research Part A. 105 (1), 319-328 (2017).
  39. Uriel, S., et al. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering. Tissue Engineering Part C Methods. 15 (3), 309-321 (2009).
  40. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia. 49, 1-15 (2017).
  41. Faust, A., et al. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. Journal of Biomaterials Applications. 31 (9), 1277-1295 (2017).
  42. Pouliot, R. A., et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. Journal of Biomedical Materials Research Part A. 104 (8), 1922-1935 (2016).
  43. Pati, F., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications. 5, 3935 (2014).
  44. Pati, F., et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 62, 164-175 (2015).
  45. Wang, R. M., Christman, K. L. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Advanced Drug Delivery Reviews. 96, 77-82 (2016).
  46. Jang, J., et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 112, 264-274 (2017).
  47. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (Pt 24), 4195-4200 (2010).
  48. Mouw, J. K., Ou, G., Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology. 15 (12), 771-785 (2014).
  49. Bonnans, C., Chou, J., Werb, Z. Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology. 15 (12), 786-801 (2014).
  50. Hinderer, S., Layland, S. L., Schenke-Layland, K. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews. 97, 260-269 (2016).
  51. Uriel, S., et al. The role of adipose protein derived hydrogels in adipogenesis. Biomaterials. 29 (27), 3712-3719 (2008).
  52. Singelyn, J. M., et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30 (29), 5409-5416 (2009).
  53. Medberry, C. J., et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials. 34 (4), 1033-1040 (2013).
  54. Loneker, A. E., Faulk, D. M., Hussey, G. S., D'Amore, A., Badylak, S. F. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. Journal of Biomedical Materials Research Part A. 104 (4), 957-965 (2016).
  55. Hill, R. C., Calle, E. A., Dzieciatkowska, M., Niklason, L. E., Hansen, K. C. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Molecular & Cellular Proteomics. 14 (4), 961-973 (2015).
  56. Li, Q., et al. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials. 75, 37-46 (2016).
  57. Tanaka, T., Yada, R. Y. N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH. Protein Engineering. 14 (9), 669-674 (2001).
  58. Ligresti, G., et al. A Novel Three-Dimensional Human Peritubular Microvascular System. Journal of the American Society of Nephrology. 27 (8), 2370-2381 (2016).
  59. Mozes, M. M., Böttinger, E. P., Jacot, T. A., Kopp, J. B. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. Journal of the American Society of Nephrology. 10 (2), 271-280 (1999).
  60. Romanowicz, L., Galewska, Z. Extracellular matrix remodeling of the umbilical cord in pre-eclampsia as a risk factor for fetal hypertension. Journal of Pregnancy. 2011, 542695 (2011).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved