A subscription to JoVE is required to view this content. Sign in or start your free trial.
The combined use of transcranial direct current stimulation and robotic therapy as an add-on for conventional rehabilitation therapy may result in improved therapeutic outcomes due to modulation of brain plasticity. In this article, we describe the combined methods used in our institute for improving motor performance after stroke.
Neurologic disorders such as stroke and cerebral palsy are leading causes of long-term disability and can lead to severe incapacity and restriction of daily activities due to lower and upper limb impairments. Intensive physical and occupational therapy are still considered main treatments, but new adjunct therapies to standard rehabilitation that may optimize functional outcomes are being studied.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that polarizes underlying brain regions through the application of weak direct currents through electrodes on the scalp, modulating cortical excitability. Increased interest in this technique can be attributed to its low cost, ease of use, and effects on human neural plasticity. Recent research has been performed to determine the clinical potential of tDCS in diverse conditions such as depression, Parkinson's disease, and motor rehabilitation after stroke. tDCS helps enhance brain plasticity and seems to be a promising technique in rehabilitation programs.
A number of robotic devices have been developed to assist in the rehabilitation of upper limb function after stroke. The rehabilitation of motor deficits is often a long process requiring multidisciplinary approaches for a patient to achieve maximum independence. These devices do not intend to replace manual rehabilitation therapy; instead, they were designed as an additional tool to rehabilitation programs, allowing immediate perception of results and tracking of improvements, thus helping patients to stay motivated.
Both tDSC and robot-assisted therapy are promising add-ons to stroke rehabilitation and target the modulation of brain plasticity, with several reports describing their use to be associated with conventional therapy and the improvement of therapeutic outcomes. However, more recently, some small clinical trials have been developed that describe the associated use of tDCS and robot-assisted therapy in stroke rehabilitation. In this article, we describe the combined methods used in our institute for improving motor performance after stroke.
Neurological disorders such as stroke, cerebral palsy, and traumatic brain injury are leading causes of long-term disability, due to lesions and subsequent neurologic symptoms that can lead to severe incapacity and restriction of daily activities1. Movement disorders significantly reduce a patient's quality of life. Motor recovery is fundamentally driven by neuroplasticity, the basic mechanism underlying the reacquisition of motor skills lost due to brain lesions2,3. Thus, rehabilitation therapies are strongly based on high-dose intensive training and intense repetition of movements to ....
This protocol follows the guidelines of our institution's human research ethics committee.
1. tDCS
Non-invasive brain stimulation with tDCS has recently generated interest due to its potential neuroplastic effects, comparatively inexpensive equipment, ease of use, and few side effects22. Studies have shown that neuromodulation by tDCS has the potential to modulate cortical excitability and plasticity, thus promoting improvements in motor performance through synaptic plasticity by stimulating the primary motor cortex4. Anodal stimulation i.......
In this protocol, we describe a standard therapy protocol for combined tDCS stimulation associated and robotic therapy, used as a complement to conventional rehabilitation programs in patients with arm impairments. The protocol's goal is to improve motor function and mobility. It is important to observe the ramping-on and ramping-off of the tDCS machine to avoid any risk of adverse effects. tDCS is a safe technique with few side effects described in the literature2.
The authors would like to thank the Spaulding Laboratory of Neuromodulation and Instituto de Reabilitação Lucy Montoro for their generous support on this project.
....Name | Company | Catalog Number | Comments |
tDCS device | Soterix Medical | Soterix Medical 1x1 | |
9V Battery (2x) | |||
Two rubber head bands | |||
Two conductive rubber electrodes | |||
Two sponge electrodes | |||
Cables | |||
NaCl solution | |||
Measurement tape | |||
Armeo Spring Robot | Hocoma | ||
inMotion ARM | Interactive Motion Technologies |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved