JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Engineering

A 100 KW Class Applied-field Magnetoplasmadynamic Thruster

Published: December 22nd, 2018

DOI:

10.3791/58510

1Key Laboratory of Spacecraft Design Optimization & Dynamic Simulation Technologies of Ministry of Education, School of Astronautics, Beihang University, 2Key Laboratory of Spacecraft Design Optimization & Dynamic Simulation Technologies of Ministry of Education, School of Space and Environment, Beihang University, 3Beijng Institute of Control Engineering, 4School of Aerospace Engineering and Geodesy, University of Stuttgart

The goal of this protocol is to introduce the design of a 100 kW class applied-field magnetoplasmadynamic thruster and relevant experimental methods.

Applied-field magnetoplasmadynamic thrusters (AF-MPD thrusters) are hybrid accelerators in which electromagnetic and gas dynamic processes accelerate plasma to high speed; they have considerable potential for future space applications with the significant advantages of high specific impulse and thrust density. In this paper, we present a series of protocols for designing and manufacturing a 100 kW class of AF-MPD thruster with water-cooling structures, a 130 V maximum discharge voltage, a 800 A maximum discharge current, and a 0.25 T maximum strength of magnetic field. A hollow tantalum tungsten cathode acts as the only propellant inlet to inhibit the radial discharge, and it is positioned axially at the rear of the anode in order to relieve anode starvation. A cylindrical divergent copper anode is employed to decrease anode power deposition, where the length has been reduced to decrease the wall-plasma connecting area. Experiments utilized a vacuum system that can achieve a working vacuum of 0.01 Pa for a total propellant mass flow rate lower than 40 mg/s and a target thrust stand. The thruster tests were carried out to measure the effects of the working parameters such as propellant flow rates, the discharge current, and the strength of applied magnetic field on the performance and to allow appropriate analysis. The thruster could be operated continuously for significant periods of time with little erosion on the hollow cathode surface. The maximum power of the thruster is 100 kW, and the performance of this water-cooled configuration is comparable with that of thrusters reported in the literature.

MPD thrusters are well known for a relatively high thrust density and a high specific impulse1,2,3. However, the typical thrust efficiency1 of MPD thrusters is relatively low, especially with propellants of noble gases4,5,6. For most MPD thrusters, a part of the propellant flow is injected into the discharge chamber from a slit between anode and cathode7,8 , with the result that a radial component is a....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1Preparation for experiment

  1. Install the thruster.
    1. Wipe the components of the thruster withnon-dust cloth,soaked with anhydrous alcohol, in a clean room.
    2. Assemble the anode with the insulator.
    3. Bring together the cathode, cathode holder and cathode connector.
    4. Add the cathode part to the anode part.
    5. Install the middle connector into the assemblage and fix them with screws (hexagon socket head screw, M5×16).
    6. Establish the coil.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In the experiment, we control discharge current (Id), propellant mass flow rate(m) and applied magnetic field (Ba). In operation, we measure the value of discharge voltage (Vd) and thrust (T), from which base we can get other performance parameters like power (P), specific impulse (Isp) and thrust efficiency (η)1.

A typical signal of discharge voltage is shown in Figure 6

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol describes the processes of ignition, operation, and thrust measurement of a 100 kW class applied field MPD thruster. The key point in designing an MPD thruster for optimum performance is choosing the proper configuration according to the specific objective. MPD thrusters with convergent-divergent anode can function steady-state in a large operation range. However, the performance may be lower than the thruster with divergent anode. The hollow cathode, especially the multichannel hollow cathode, is superior .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Fundamental Research Program (No. JCKY2017601C). We appreciate the helping of Thomas M. York, Emeritus Professor at Ohio State University.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Cryogenic Pumps Brooks Automation Pumping speed: 10000L/s
Displacement Sensor Panasonic HG-C1030 Repetition precision: 10μm
Linearity: ±0.1% F.S.
Mass Flow Rate Controller Brooks Automation Range: 0-120mg/s
Molecular Pump Oerlikon Pumping speed: 2100L/s
Moveable Plantform Beijing Weina Guangke Automation equipment Co., Ltd. Range:0-2000mm
Plsatic Water Pipes Xingye Xingye fluoroplastics (Jiaxing) Co., Ltd. Ultimate pressure: 4.5MPa
Propellant Argon Beijing Huanyu Hinghui Gas Technology Co., Ltd. Purity:99.999%
Refrigerator Beijing Jiuzhou Tongcheng Technology Co., Ltd. Refrigeration power:45kW
Water Pumps Liaocheng vanguard Motor Co., Ltd.;
Shanghai people pump industry group Manufacturing Co., Ltd.;
Nanfang Pump Limited company
Maximum Output pressure:
Centrifugal pump:1MPa
Plunger pump:10MPa

  1. Kodys, A., Choueiri, E. A Critical Review of the State-of-the-Art in the Performance of Applied-field Magnetoplasmadynamic Thrusters. , (2005).
  2. Arakawa, Y., et al. Electromagnetic Effects in an Applied-field Magnetoplasmadynamic Thruster. Journal of Propulsion & Power. 8 (1), 98-102 (1992).
  3. Myers, R., Lapointe, M., Mantenieks, M. MPD thruster Technology. , (1991).
  4. Myers, R. Applied-field MPD thruster performance with hydrogen and argon propellants. Journal of Propulsion & Power. 9 (5), 781-784 (1993).
  5. Albertoni, R., Rossetti, P., Paganucci, F., Andrenucci, M. Experimental Study of a 100-kW class Applied-Field MPD Thruster. , (2011).
  6. Lapointe, M., Strzempkowski, E., Pencil, E. High Power MPD Thruster Performance Measurements. , (2004).
  7. Tahara, H., Kagaya, Y., Yoshikawa, T. Performance and Acceleration Process of Quasisteady Magnetoplasmadynamic Arcjets with Applied Magnetic Fields. Journal of Propulsion and Power. 13 (5), 651-658 (1997).
  8. Tahara, H., Kagaya, K., Yoshikawai, T. Effects of Applied Magnetic Fields on Performance of a Quasisteady Magnetoplasmadynamic Arc. Journal of Propulsion and Power. 11 (2), 337-342 (1995).
  9. Li, Z., et al. Increasing the Effective Voltage in Applied-Field MPD Thrusters. Journal of Physics D Applied Physics. 51, 085201 (2018).
  10. Myers, R., Mantenieks, M., Sovey, J. Geometric Effects in Applied-field MPD Thrusters. , (1990).
  11. Myers, R. Geometric Scaling of Applied-Field Magnetoplasmadynamic Thrusters. Journal of Propulsion and Power. 11 (2), 343-350 (1995).
  12. Mikelides, P. Applied-Field Magnetoplasmadynamic Thrusters, Part 2: Analytic Expressions for Thrust and Voltage. Journal of Propulsion and Power. 16 (5), 894-901 (2000).
  13. Nakata, D., et al. Experimental Study for the Optimal Electrode Geometry in an MPD Thruster. , (2007).
  14. Kurtz, H., Auweter-Kurtz, M., Merke, W., Schrade, H. Experimental MPD thruster investigations. , (1987).
  15. Blackstock, A. W., et al. Experiments Using a 25-kW Hollow Cathode Lithium Vapor MPD Arcjet. AIAA Journal. 8 (5), 886-894 (1970).
  16. Krulle, G. Characteristics and local analysis of MPD thruster operation. , (1967).
  17. Malliaris, A. C., Libby, D. R. Velocities of Neutral and Ionic Species in a MPD Flow. , (1969).
  18. Wang, B., et al. Target thrust measurement for applied-field magnetoplasmadynamic thruster. Measurement Science & Technology. 29, 075302 (2018).
  19. Tikhonov, V. B., Semenikhin, S. A., Brophy, J. R., Polk, J. E. . The Experimental Performance of the 100-kW Li MPDT with External Magnetic. , (1995).
  20. Burkhart, J. A., et al. . Low environmental pressure MPD arc tests. , (1967).
  21. Boxberger, A., Jüstel, P., Herdrich, G. Performance of 100 kW Steady State Applied-Field MPD Thruster. , (2017).
  22. Malliaris, A. C., et al. Performance of Quasi-Steady MPD Thrusters at High Powers. AIAA Journal. 10 (2), 121-122 (1972).
  23. Knudsen, B. M. . The Kinetic Theory of Gases (London:Methuen). , 26-27 (1950).
  24. Auweter-Kurtz, M., Krulle, G., Kurtz, H. The Investigation of Applied-Field MPD Thrusters on the International Space Station. , (1997).
  25. Connolly, D., Sovie, R. Effect of background pressure on magnetoplasmadynamic thruster operation. Journal of Spacecraft and Rockets. 7 (3), 255-258 (1970).
  26. Esker, D., Kroutil, J., Sedrick, A. . Cathode Studies of a Radiation Cooled MPD Arc Thruster. , (1970).
  27. Myers, R. Plume characteristics of MPD thrusters - A preliminary examination. , (1989).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved