Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of this protocol is to introduce the design of a 100 kW class applied-field magnetoplasmadynamic thruster and relevant experimental methods.

Abstract

Applied-field magnetoplasmadynamic thrusters (AF-MPD thrusters) are hybrid accelerators in which electromagnetic and gas dynamic processes accelerate plasma to high speed; they have considerable potential for future space applications with the significant advantages of high specific impulse and thrust density. In this paper, we present a series of protocols for designing and manufacturing a 100 kW class of AF-MPD thruster with water-cooling structures, a 130 V maximum discharge voltage, a 800 A maximum discharge current, and a 0.25 T maximum strength of magnetic field. A hollow tantalum tungsten cathode acts as the only propellant inlet to inhibit the radial discharge, and it is positioned axially at the rear of the anode in order to relieve anode starvation. A cylindrical divergent copper anode is employed to decrease anode power deposition, where the length has been reduced to decrease the wall-plasma connecting area. Experiments utilized a vacuum system that can achieve a working vacuum of 0.01 Pa for a total propellant mass flow rate lower than 40 mg/s and a target thrust stand. The thruster tests were carried out to measure the effects of the working parameters such as propellant flow rates, the discharge current, and the strength of applied magnetic field on the performance and to allow appropriate analysis. The thruster could be operated continuously for significant periods of time with little erosion on the hollow cathode surface. The maximum power of the thruster is 100 kW, and the performance of this water-cooled configuration is comparable with that of thrusters reported in the literature.

Introduction

MPD thrusters are well known for a relatively high thrust density and a high specific impulse1,2,3. However, the typical thrust efficiency1 of MPD thrusters is relatively low, especially with propellants of noble gases4,5,6. For most MPD thrusters, a part of the propellant flow is injected into the discharge chamber from a slit between anode and cathode7,8 , with the result that a radial component is a....

Protocol

1Preparation for experiment

  1. Install the thruster.
    1. Wipe the components of the thruster withnon-dust cloth,soaked with anhydrous alcohol, in a clean room.
    2. Assemble the anode with the insulator.
    3. Bring together the cathode, cathode holder and cathode connector.
    4. Add the cathode part to the anode part.
    5. Install the middle connector into the assemblage and fix them with screws (hexagon socket head screw, M5×16).
    6. Establish the coil.......

Representative Results

In the experiment, we control discharge current (Id), propellant mass flow rate(m) and applied magnetic field (Ba). In operation, we measure the value of discharge voltage (Vd) and thrust (T), from which base we can get other performance parameters like power (P), specific impulse (Isp) and thrust efficiency (η)1.

A typical signal of discharge voltage is shown in Figure 6

Discussion

This protocol describes the processes of ignition, operation, and thrust measurement of a 100 kW class applied field MPD thruster. The key point in designing an MPD thruster for optimum performance is choosing the proper configuration according to the specific objective. MPD thrusters with convergent-divergent anode can function steady-state in a large operation range. However, the performance may be lower than the thruster with divergent anode. The hollow cathode, especially the multichannel hollow cathode, is superior .......

Acknowledgements

This work was supported by the Fundamental Research Program (No. JCKY2017601C). We appreciate the helping of Thomas M. York, Emeritus Professor at Ohio State University.

....

Materials

NameCompanyCatalog NumberComments
Cryogenic PumpsBrooks AutomationPumping speed: 10000L/s
Displacement SensorPanasonicHG-C1030Repetition precision: 10μm
Linearity: ±0.1% F.S.
Mass Flow Rate ControllerBrooks AutomationRange: 0-120mg/s
Molecular PumpOerlikonPumping speed: 2100L/s
Moveable PlantformBeijing Weina Guangke Automation equipment Co., Ltd.Range:0-2000mm
Plsatic Water PipesXingye Xingye fluoroplastics (Jiaxing) Co., Ltd.Ultimate pressure: 4.5MPa
Propellant ArgonBeijing Huanyu Hinghui Gas Technology Co., Ltd.Purity:99.999%
RefrigeratorBeijing Jiuzhou Tongcheng Technology Co., Ltd.Refrigeration power:45kW
Water PumpsLiaocheng vanguard Motor Co., Ltd.;
Shanghai people pump industry group Manufacturing Co., Ltd.;
Nanfang Pump Limited company
Maximum Output pressure:
Centrifugal pump:1MPa
Plunger pump:10MPa

References

Explore More Articles

Magnetoplasmadynamic ThrusterMPD ThrusterElectric AcceleratorApplied field100 KW ClassThruster DesignAnodeCathodeInsulatorPropellant ChannelsMagnetic CoilVacuum SystemPower Source System

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved